Solve for x
x=-\frac{6}{23}\approx -0.260869565
Graph
Share
Copied to clipboard
7+\frac{0.3x}{0.2}+\frac{-0.2}{0.2}=\frac{1.5-5x}{0.5}
Divide each term of 0.3x-0.2 by 0.2 to get \frac{0.3x}{0.2}+\frac{-0.2}{0.2}.
7+1.5x+\frac{-0.2}{0.2}=\frac{1.5-5x}{0.5}
Divide 0.3x by 0.2 to get 1.5x.
7+1.5x-1=\frac{1.5-5x}{0.5}
Divide -0.2 by 0.2 to get -1.
6+1.5x=\frac{1.5-5x}{0.5}
Subtract 1 from 7 to get 6.
6+1.5x=\frac{1.5}{0.5}+\frac{-5x}{0.5}
Divide each term of 1.5-5x by 0.5 to get \frac{1.5}{0.5}+\frac{-5x}{0.5}.
6+1.5x=\frac{15}{5}+\frac{-5x}{0.5}
Expand \frac{1.5}{0.5} by multiplying both numerator and the denominator by 10.
6+1.5x=3+\frac{-5x}{0.5}
Divide 15 by 5 to get 3.
6+1.5x=3-10x
Divide -5x by 0.5 to get -10x.
6+1.5x+10x=3
Add 10x to both sides.
6+11.5x=3
Combine 1.5x and 10x to get 11.5x.
11.5x=3-6
Subtract 6 from both sides.
11.5x=-3
Subtract 6 from 3 to get -3.
x=\frac{-3}{11.5}
Divide both sides by 11.5.
x=\frac{-30}{115}
Expand \frac{-3}{11.5} by multiplying both numerator and the denominator by 10.
x=-\frac{6}{23}
Reduce the fraction \frac{-30}{115} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}