Solve for y
y = \frac{11881}{25} = 475\frac{6}{25} = 475.24
y=0
Graph
Share
Copied to clipboard
\left(6y+69y\right)^{2}=\left(545\sqrt{9y}\right)^{2}
Square both sides of the equation.
\left(75y\right)^{2}=\left(545\sqrt{9y}\right)^{2}
Combine 6y and 69y to get 75y.
75^{2}y^{2}=\left(545\sqrt{9y}\right)^{2}
Expand \left(75y\right)^{2}.
5625y^{2}=\left(545\sqrt{9y}\right)^{2}
Calculate 75 to the power of 2 and get 5625.
5625y^{2}=545^{2}\left(\sqrt{9y}\right)^{2}
Expand \left(545\sqrt{9y}\right)^{2}.
5625y^{2}=297025\left(\sqrt{9y}\right)^{2}
Calculate 545 to the power of 2 and get 297025.
5625y^{2}=297025\times 9y
Calculate \sqrt{9y} to the power of 2 and get 9y.
5625y^{2}=2673225y
Multiply 297025 and 9 to get 2673225.
5625y^{2}-2673225y=0
Subtract 2673225y from both sides.
y\left(5625y-2673225\right)=0
Factor out y.
y=0 y=\frac{11881}{25}
To find equation solutions, solve y=0 and 5625y-2673225=0.
6\times 0+69\times 0=545\sqrt{9\times 0}
Substitute 0 for y in the equation 6y+69y=545\sqrt{9y}.
0=0
Simplify. The value y=0 satisfies the equation.
6\times \frac{11881}{25}+69\times \frac{11881}{25}=545\sqrt{9\times \frac{11881}{25}}
Substitute \frac{11881}{25} for y in the equation 6y+69y=545\sqrt{9y}.
35643=35643
Simplify. The value y=\frac{11881}{25} satisfies the equation.
y=0 y=\frac{11881}{25}
List all solutions of 6y+69y=545\sqrt{9y}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}