Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(6y+69y\right)^{2}=\left(545\sqrt{9y}\right)^{2}
Square both sides of the equation.
\left(75y\right)^{2}=\left(545\sqrt{9y}\right)^{2}
Combine 6y and 69y to get 75y.
75^{2}y^{2}=\left(545\sqrt{9y}\right)^{2}
Expand \left(75y\right)^{2}.
5625y^{2}=\left(545\sqrt{9y}\right)^{2}
Calculate 75 to the power of 2 and get 5625.
5625y^{2}=545^{2}\left(\sqrt{9y}\right)^{2}
Expand \left(545\sqrt{9y}\right)^{2}.
5625y^{2}=297025\left(\sqrt{9y}\right)^{2}
Calculate 545 to the power of 2 and get 297025.
5625y^{2}=297025\times 9y
Calculate \sqrt{9y} to the power of 2 and get 9y.
5625y^{2}=2673225y
Multiply 297025 and 9 to get 2673225.
5625y^{2}-2673225y=0
Subtract 2673225y from both sides.
y\left(5625y-2673225\right)=0
Factor out y.
y=0 y=\frac{11881}{25}
To find equation solutions, solve y=0 and 5625y-2673225=0.
6\times 0+69\times 0=545\sqrt{9\times 0}
Substitute 0 for y in the equation 6y+69y=545\sqrt{9y}.
0=0
Simplify. The value y=0 satisfies the equation.
6\times \frac{11881}{25}+69\times \frac{11881}{25}=545\sqrt{9\times \frac{11881}{25}}
Substitute \frac{11881}{25} for y in the equation 6y+69y=545\sqrt{9y}.
35643=35643
Simplify. The value y=\frac{11881}{25} satisfies the equation.
y=0 y=\frac{11881}{25}
List all solutions of 6y+69y=545\sqrt{9y}.