Solve for y (complex solution)
y=\frac{109\sqrt{x}}{5}
Solve for x
x=\frac{25y^{2}}{11881}
y\geq 0
Solve for y
y=\frac{109\sqrt{x}}{5}
x\geq 0
Solve for x (complex solution)
x=\frac{25y^{2}}{11881}
arg(y)<\pi \text{ or }y=0
Graph
Share
Copied to clipboard
75y=545\sqrt{9x}
Combine 6y and 69y to get 75y.
\frac{75y}{75}=\frac{1635\sqrt{x}}{75}
Divide both sides by 75.
y=\frac{1635\sqrt{x}}{75}
Dividing by 75 undoes the multiplication by 75.
y=\frac{109\sqrt{x}}{5}
Divide 1635\sqrt{x} by 75.
75y=545\sqrt{9x}
Combine 6y and 69y to get 75y.
545\sqrt{9x}=75y
Swap sides so that all variable terms are on the left hand side.
\frac{545\sqrt{9x}}{545}=\frac{75y}{545}
Divide both sides by 545.
\sqrt{9x}=\frac{75y}{545}
Dividing by 545 undoes the multiplication by 545.
\sqrt{9x}=\frac{15y}{109}
Divide 75y by 545.
9x=\frac{225y^{2}}{11881}
Square both sides of the equation.
\frac{9x}{9}=\frac{225y^{2}}{9\times 11881}
Divide both sides by 9.
x=\frac{225y^{2}}{9\times 11881}
Dividing by 9 undoes the multiplication by 9.
x=\frac{25y^{2}}{11881}
Divide \frac{225y^{2}}{11881} by 9.
75y=545\sqrt{9x}
Combine 6y and 69y to get 75y.
\frac{75y}{75}=\frac{1635\sqrt{x}}{75}
Divide both sides by 75.
y=\frac{1635\sqrt{x}}{75}
Dividing by 75 undoes the multiplication by 75.
y=\frac{109\sqrt{x}}{5}
Divide 1635\sqrt{x} by 75.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}