Solve for x
x=\frac{3y}{2}
Solve for y
y=\frac{2x}{3}
Graph
Share
Copied to clipboard
6x-9y+8x-12y+4=4
Use the distributive property to multiply -4 by -2x+3y-1.
14x-9y-12y+4=4
Combine 6x and 8x to get 14x.
14x-21y+4=4
Combine -9y and -12y to get -21y.
14x+4=4+21y
Add 21y to both sides.
14x=4+21y-4
Subtract 4 from both sides.
14x=21y
Subtract 4 from 4 to get 0.
\frac{14x}{14}=\frac{21y}{14}
Divide both sides by 14.
x=\frac{21y}{14}
Dividing by 14 undoes the multiplication by 14.
x=\frac{3y}{2}
Divide 21y by 14.
6x-9y+8x-12y+4=4
Use the distributive property to multiply -4 by -2x+3y-1.
14x-9y-12y+4=4
Combine 6x and 8x to get 14x.
14x-21y+4=4
Combine -9y and -12y to get -21y.
-21y+4=4-14x
Subtract 14x from both sides.
-21y=4-14x-4
Subtract 4 from both sides.
-21y=-14x
Subtract 4 from 4 to get 0.
\frac{-21y}{-21}=-\frac{14x}{-21}
Divide both sides by -21.
y=-\frac{14x}{-21}
Dividing by -21 undoes the multiplication by -21.
y=\frac{2x}{3}
Divide -14x by -21.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}