Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-18x^{2}+6x=0.01
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-18x^{2}+6x-0.01=0.01-0.01
Subtract 0.01 from both sides of the equation.
-18x^{2}+6x-0.01=0
Subtracting 0.01 from itself leaves 0.
x=\frac{-6±\sqrt{6^{2}-4\left(-18\right)\left(-0.01\right)}}{2\left(-18\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -18 for a, 6 for b, and -0.01 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\left(-18\right)\left(-0.01\right)}}{2\left(-18\right)}
Square 6.
x=\frac{-6±\sqrt{36+72\left(-0.01\right)}}{2\left(-18\right)}
Multiply -4 times -18.
x=\frac{-6±\sqrt{36-0.72}}{2\left(-18\right)}
Multiply 72 times -0.01.
x=\frac{-6±\sqrt{35.28}}{2\left(-18\right)}
Add 36 to -0.72.
x=\frac{-6±\frac{21\sqrt{2}}{5}}{2\left(-18\right)}
Take the square root of 35.28.
x=\frac{-6±\frac{21\sqrt{2}}{5}}{-36}
Multiply 2 times -18.
x=\frac{\frac{21\sqrt{2}}{5}-6}{-36}
Now solve the equation x=\frac{-6±\frac{21\sqrt{2}}{5}}{-36} when ± is plus. Add -6 to \frac{21\sqrt{2}}{5}.
x=-\frac{7\sqrt{2}}{60}+\frac{1}{6}
Divide -6+\frac{21\sqrt{2}}{5} by -36.
x=\frac{-\frac{21\sqrt{2}}{5}-6}{-36}
Now solve the equation x=\frac{-6±\frac{21\sqrt{2}}{5}}{-36} when ± is minus. Subtract \frac{21\sqrt{2}}{5} from -6.
x=\frac{7\sqrt{2}}{60}+\frac{1}{6}
Divide -6-\frac{21\sqrt{2}}{5} by -36.
x=-\frac{7\sqrt{2}}{60}+\frac{1}{6} x=\frac{7\sqrt{2}}{60}+\frac{1}{6}
The equation is now solved.
-18x^{2}+6x=0.01
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-18x^{2}+6x}{-18}=\frac{0.01}{-18}
Divide both sides by -18.
x^{2}+\frac{6}{-18}x=\frac{0.01}{-18}
Dividing by -18 undoes the multiplication by -18.
x^{2}-\frac{1}{3}x=\frac{0.01}{-18}
Reduce the fraction \frac{6}{-18} to lowest terms by extracting and canceling out 6.
x^{2}-\frac{1}{3}x=-\frac{1}{1800}
Divide 0.01 by -18.
x^{2}-\frac{1}{3}x+\left(-\frac{1}{6}\right)^{2}=-\frac{1}{1800}+\left(-\frac{1}{6}\right)^{2}
Divide -\frac{1}{3}, the coefficient of the x term, by 2 to get -\frac{1}{6}. Then add the square of -\frac{1}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{3}x+\frac{1}{36}=-\frac{1}{1800}+\frac{1}{36}
Square -\frac{1}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{49}{1800}
Add -\frac{1}{1800} to \frac{1}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{6}\right)^{2}=\frac{49}{1800}
Factor x^{2}-\frac{1}{3}x+\frac{1}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{6}\right)^{2}}=\sqrt{\frac{49}{1800}}
Take the square root of both sides of the equation.
x-\frac{1}{6}=\frac{7\sqrt{2}}{60} x-\frac{1}{6}=-\frac{7\sqrt{2}}{60}
Simplify.
x=\frac{7\sqrt{2}}{60}+\frac{1}{6} x=-\frac{7\sqrt{2}}{60}+\frac{1}{6}
Add \frac{1}{6} to both sides of the equation.