Solve for x
x=\frac{x_{2}+5}{7}
Solve for x_2
x_{2}=7x-5
Graph
Share
Copied to clipboard
6x\times 7=6\times 5+6x_{2}
Add 5 and 2 to get 7.
42x=6\times 5+6x_{2}
Multiply 6 and 7 to get 42.
42x=30+6x_{2}
Multiply 6 and 5 to get 30.
42x=6x_{2}+30
The equation is in standard form.
\frac{42x}{42}=\frac{6x_{2}+30}{42}
Divide both sides by 42.
x=\frac{6x_{2}+30}{42}
Dividing by 42 undoes the multiplication by 42.
x=\frac{x_{2}+5}{7}
Divide 30+6x_{2} by 42.
6x\times 7=6\times 5+6x_{2}
Add 5 and 2 to get 7.
42x=6\times 5+6x_{2}
Multiply 6 and 7 to get 42.
42x=30+6x_{2}
Multiply 6 and 5 to get 30.
30+6x_{2}=42x
Swap sides so that all variable terms are on the left hand side.
6x_{2}=42x-30
Subtract 30 from both sides.
\frac{6x_{2}}{6}=\frac{42x-30}{6}
Divide both sides by 6.
x_{2}=\frac{42x-30}{6}
Dividing by 6 undoes the multiplication by 6.
x_{2}=7x-5
Divide 42x-30 by 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}