Solve for x
x=6
x=9
Graph
Share
Copied to clipboard
6x=\left(0.1x+0.6\right)\left(2x+18\right)
Use the distributive property to multiply 0.05 by 2x+12.
6x=0.2x^{2}+3x+10.8
Use the distributive property to multiply 0.1x+0.6 by 2x+18 and combine like terms.
6x-0.2x^{2}=3x+10.8
Subtract 0.2x^{2} from both sides.
6x-0.2x^{2}-3x=10.8
Subtract 3x from both sides.
3x-0.2x^{2}=10.8
Combine 6x and -3x to get 3x.
3x-0.2x^{2}-10.8=0
Subtract 10.8 from both sides.
-0.2x^{2}+3x-10.8=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-3±\sqrt{3^{2}-4\left(-0.2\right)\left(-10.8\right)}}{2\left(-0.2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -0.2 for a, 3 for b, and -10.8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-0.2\right)\left(-10.8\right)}}{2\left(-0.2\right)}
Square 3.
x=\frac{-3±\sqrt{9+0.8\left(-10.8\right)}}{2\left(-0.2\right)}
Multiply -4 times -0.2.
x=\frac{-3±\sqrt{9-8.64}}{2\left(-0.2\right)}
Multiply 0.8 times -10.8 by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-3±\sqrt{0.36}}{2\left(-0.2\right)}
Add 9 to -8.64.
x=\frac{-3±\frac{3}{5}}{2\left(-0.2\right)}
Take the square root of 0.36.
x=\frac{-3±\frac{3}{5}}{-0.4}
Multiply 2 times -0.2.
x=-\frac{\frac{12}{5}}{-0.4}
Now solve the equation x=\frac{-3±\frac{3}{5}}{-0.4} when ± is plus. Add -3 to \frac{3}{5}.
x=6
Divide -\frac{12}{5} by -0.4 by multiplying -\frac{12}{5} by the reciprocal of -0.4.
x=-\frac{\frac{18}{5}}{-0.4}
Now solve the equation x=\frac{-3±\frac{3}{5}}{-0.4} when ± is minus. Subtract \frac{3}{5} from -3.
x=9
Divide -\frac{18}{5} by -0.4 by multiplying -\frac{18}{5} by the reciprocal of -0.4.
x=6 x=9
The equation is now solved.
6x=\left(0.1x+0.6\right)\left(2x+18\right)
Use the distributive property to multiply 0.05 by 2x+12.
6x=0.2x^{2}+3x+10.8
Use the distributive property to multiply 0.1x+0.6 by 2x+18 and combine like terms.
6x-0.2x^{2}=3x+10.8
Subtract 0.2x^{2} from both sides.
6x-0.2x^{2}-3x=10.8
Subtract 3x from both sides.
3x-0.2x^{2}=10.8
Combine 6x and -3x to get 3x.
-0.2x^{2}+3x=10.8
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-0.2x^{2}+3x}{-0.2}=\frac{10.8}{-0.2}
Multiply both sides by -5.
x^{2}+\frac{3}{-0.2}x=\frac{10.8}{-0.2}
Dividing by -0.2 undoes the multiplication by -0.2.
x^{2}-15x=\frac{10.8}{-0.2}
Divide 3 by -0.2 by multiplying 3 by the reciprocal of -0.2.
x^{2}-15x=-54
Divide 10.8 by -0.2 by multiplying 10.8 by the reciprocal of -0.2.
x^{2}-15x+\left(-\frac{15}{2}\right)^{2}=-54+\left(-\frac{15}{2}\right)^{2}
Divide -15, the coefficient of the x term, by 2 to get -\frac{15}{2}. Then add the square of -\frac{15}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-15x+\frac{225}{4}=-54+\frac{225}{4}
Square -\frac{15}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-15x+\frac{225}{4}=\frac{9}{4}
Add -54 to \frac{225}{4}.
\left(x-\frac{15}{2}\right)^{2}=\frac{9}{4}
Factor x^{2}-15x+\frac{225}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{15}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Take the square root of both sides of the equation.
x-\frac{15}{2}=\frac{3}{2} x-\frac{15}{2}=-\frac{3}{2}
Simplify.
x=9 x=6
Add \frac{15}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}