6x+16 < -10(8-4x
Solve for x
x>\frac{48}{17}
Graph
Share
Copied to clipboard
6x+16<-80+40x
Use the distributive property to multiply -10 by 8-4x.
6x+16-40x<-80
Subtract 40x from both sides.
-34x+16<-80
Combine 6x and -40x to get -34x.
-34x<-80-16
Subtract 16 from both sides.
-34x<-96
Subtract 16 from -80 to get -96.
x>\frac{-96}{-34}
Divide both sides by -34. Since -34 is negative, the inequality direction is changed.
x>\frac{48}{17}
Reduce the fraction \frac{-96}{-34} to lowest terms by extracting and canceling out -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}