Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

3\left(2x+5x^{2}\right)
Factor out 3.
x\left(2+5x\right)
Consider 2x+5x^{2}. Factor out x.
3x\left(5x+2\right)
Rewrite the complete factored expression.
15x^{2}+6x=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-6±\sqrt{6^{2}}}{2\times 15}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-6±6}{2\times 15}
Take the square root of 6^{2}.
x=\frac{-6±6}{30}
Multiply 2 times 15.
x=\frac{0}{30}
Now solve the equation x=\frac{-6±6}{30} when ± is plus. Add -6 to 6.
x=0
Divide 0 by 30.
x=-\frac{12}{30}
Now solve the equation x=\frac{-6±6}{30} when ± is minus. Subtract 6 from -6.
x=-\frac{2}{5}
Reduce the fraction \frac{-12}{30} to lowest terms by extracting and canceling out 6.
15x^{2}+6x=15x\left(x-\left(-\frac{2}{5}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and -\frac{2}{5} for x_{2}.
15x^{2}+6x=15x\left(x+\frac{2}{5}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
15x^{2}+6x=15x\times \frac{5x+2}{5}
Add \frac{2}{5} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
15x^{2}+6x=3x\left(5x+2\right)
Cancel out 5, the greatest common factor in 15 and 5.