Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

6x^{2}\times 2+4=2x+2\times 2x+12
Multiply x and x to get x^{2}.
12x^{2}+4=2x+2\times 2x+12
Multiply 6 and 2 to get 12.
12x^{2}+4=2x+4x+12
Multiply 2 and 2 to get 4.
12x^{2}+4=6x+12
Combine 2x and 4x to get 6x.
12x^{2}+4-6x=12
Subtract 6x from both sides.
12x^{2}+4-6x-12=0
Subtract 12 from both sides.
12x^{2}-8-6x=0
Subtract 12 from 4 to get -8.
12x^{2}-6x-8=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 12\left(-8\right)}}{2\times 12}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 12 for a, -6 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 12\left(-8\right)}}{2\times 12}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36-48\left(-8\right)}}{2\times 12}
Multiply -4 times 12.
x=\frac{-\left(-6\right)±\sqrt{36+384}}{2\times 12}
Multiply -48 times -8.
x=\frac{-\left(-6\right)±\sqrt{420}}{2\times 12}
Add 36 to 384.
x=\frac{-\left(-6\right)±2\sqrt{105}}{2\times 12}
Take the square root of 420.
x=\frac{6±2\sqrt{105}}{2\times 12}
The opposite of -6 is 6.
x=\frac{6±2\sqrt{105}}{24}
Multiply 2 times 12.
x=\frac{2\sqrt{105}+6}{24}
Now solve the equation x=\frac{6±2\sqrt{105}}{24} when ± is plus. Add 6 to 2\sqrt{105}.
x=\frac{\sqrt{105}}{12}+\frac{1}{4}
Divide 6+2\sqrt{105} by 24.
x=\frac{6-2\sqrt{105}}{24}
Now solve the equation x=\frac{6±2\sqrt{105}}{24} when ± is minus. Subtract 2\sqrt{105} from 6.
x=-\frac{\sqrt{105}}{12}+\frac{1}{4}
Divide 6-2\sqrt{105} by 24.
x=\frac{\sqrt{105}}{12}+\frac{1}{4} x=-\frac{\sqrt{105}}{12}+\frac{1}{4}
The equation is now solved.
6x^{2}\times 2+4=2x+2\times 2x+12
Multiply x and x to get x^{2}.
12x^{2}+4=2x+2\times 2x+12
Multiply 6 and 2 to get 12.
12x^{2}+4=2x+4x+12
Multiply 2 and 2 to get 4.
12x^{2}+4=6x+12
Combine 2x and 4x to get 6x.
12x^{2}+4-6x=12
Subtract 6x from both sides.
12x^{2}-6x=12-4
Subtract 4 from both sides.
12x^{2}-6x=8
Subtract 4 from 12 to get 8.
\frac{12x^{2}-6x}{12}=\frac{8}{12}
Divide both sides by 12.
x^{2}+\left(-\frac{6}{12}\right)x=\frac{8}{12}
Dividing by 12 undoes the multiplication by 12.
x^{2}-\frac{1}{2}x=\frac{8}{12}
Reduce the fraction \frac{-6}{12} to lowest terms by extracting and canceling out 6.
x^{2}-\frac{1}{2}x=\frac{2}{3}
Reduce the fraction \frac{8}{12} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=\frac{2}{3}+\left(-\frac{1}{4}\right)^{2}
Divide -\frac{1}{2}, the coefficient of the x term, by 2 to get -\frac{1}{4}. Then add the square of -\frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{2}{3}+\frac{1}{16}
Square -\frac{1}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{35}{48}
Add \frac{2}{3} to \frac{1}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{4}\right)^{2}=\frac{35}{48}
Factor x^{2}-\frac{1}{2}x+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{35}{48}}
Take the square root of both sides of the equation.
x-\frac{1}{4}=\frac{\sqrt{105}}{12} x-\frac{1}{4}=-\frac{\sqrt{105}}{12}
Simplify.
x=\frac{\sqrt{105}}{12}+\frac{1}{4} x=-\frac{\sqrt{105}}{12}+\frac{1}{4}
Add \frac{1}{4} to both sides of the equation.