Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

-43t^{2}+6t=15
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-43t^{2}+6t-15=15-15
Subtract 15 from both sides of the equation.
-43t^{2}+6t-15=0
Subtracting 15 from itself leaves 0.
t=\frac{-6±\sqrt{6^{2}-4\left(-43\right)\left(-15\right)}}{2\left(-43\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -43 for a, 6 for b, and -15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-6±\sqrt{36-4\left(-43\right)\left(-15\right)}}{2\left(-43\right)}
Square 6.
t=\frac{-6±\sqrt{36+172\left(-15\right)}}{2\left(-43\right)}
Multiply -4 times -43.
t=\frac{-6±\sqrt{36-2580}}{2\left(-43\right)}
Multiply 172 times -15.
t=\frac{-6±\sqrt{-2544}}{2\left(-43\right)}
Add 36 to -2580.
t=\frac{-6±4\sqrt{159}i}{2\left(-43\right)}
Take the square root of -2544.
t=\frac{-6±4\sqrt{159}i}{-86}
Multiply 2 times -43.
t=\frac{-6+4\sqrt{159}i}{-86}
Now solve the equation t=\frac{-6±4\sqrt{159}i}{-86} when ± is plus. Add -6 to 4i\sqrt{159}.
t=\frac{-2\sqrt{159}i+3}{43}
Divide -6+4i\sqrt{159} by -86.
t=\frac{-4\sqrt{159}i-6}{-86}
Now solve the equation t=\frac{-6±4\sqrt{159}i}{-86} when ± is minus. Subtract 4i\sqrt{159} from -6.
t=\frac{3+2\sqrt{159}i}{43}
Divide -6-4i\sqrt{159} by -86.
t=\frac{-2\sqrt{159}i+3}{43} t=\frac{3+2\sqrt{159}i}{43}
The equation is now solved.
-43t^{2}+6t=15
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-43t^{2}+6t}{-43}=\frac{15}{-43}
Divide both sides by -43.
t^{2}+\frac{6}{-43}t=\frac{15}{-43}
Dividing by -43 undoes the multiplication by -43.
t^{2}-\frac{6}{43}t=\frac{15}{-43}
Divide 6 by -43.
t^{2}-\frac{6}{43}t=-\frac{15}{43}
Divide 15 by -43.
t^{2}-\frac{6}{43}t+\left(-\frac{3}{43}\right)^{2}=-\frac{15}{43}+\left(-\frac{3}{43}\right)^{2}
Divide -\frac{6}{43}, the coefficient of the x term, by 2 to get -\frac{3}{43}. Then add the square of -\frac{3}{43} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{6}{43}t+\frac{9}{1849}=-\frac{15}{43}+\frac{9}{1849}
Square -\frac{3}{43} by squaring both the numerator and the denominator of the fraction.
t^{2}-\frac{6}{43}t+\frac{9}{1849}=-\frac{636}{1849}
Add -\frac{15}{43} to \frac{9}{1849} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t-\frac{3}{43}\right)^{2}=-\frac{636}{1849}
Factor t^{2}-\frac{6}{43}t+\frac{9}{1849}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{3}{43}\right)^{2}}=\sqrt{-\frac{636}{1849}}
Take the square root of both sides of the equation.
t-\frac{3}{43}=\frac{2\sqrt{159}i}{43} t-\frac{3}{43}=-\frac{2\sqrt{159}i}{43}
Simplify.
t=\frac{3+2\sqrt{159}i}{43} t=\frac{-2\sqrt{159}i+3}{43}
Add \frac{3}{43} to both sides of the equation.