Solve for t
t=\frac{2\sqrt{219}-6}{35}\approx 0.674208491
t=\frac{-2\sqrt{219}-6}{35}\approx -1.017065634
Share
Copied to clipboard
12t+35t^{2}=24
Multiply both sides of the equation by 2.
12t+35t^{2}-24=0
Subtract 24 from both sides.
35t^{2}+12t-24=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-12±\sqrt{12^{2}-4\times 35\left(-24\right)}}{2\times 35}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 35 for a, 12 for b, and -24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-12±\sqrt{144-4\times 35\left(-24\right)}}{2\times 35}
Square 12.
t=\frac{-12±\sqrt{144-140\left(-24\right)}}{2\times 35}
Multiply -4 times 35.
t=\frac{-12±\sqrt{144+3360}}{2\times 35}
Multiply -140 times -24.
t=\frac{-12±\sqrt{3504}}{2\times 35}
Add 144 to 3360.
t=\frac{-12±4\sqrt{219}}{2\times 35}
Take the square root of 3504.
t=\frac{-12±4\sqrt{219}}{70}
Multiply 2 times 35.
t=\frac{4\sqrt{219}-12}{70}
Now solve the equation t=\frac{-12±4\sqrt{219}}{70} when ± is plus. Add -12 to 4\sqrt{219}.
t=\frac{2\sqrt{219}-6}{35}
Divide -12+4\sqrt{219} by 70.
t=\frac{-4\sqrt{219}-12}{70}
Now solve the equation t=\frac{-12±4\sqrt{219}}{70} when ± is minus. Subtract 4\sqrt{219} from -12.
t=\frac{-2\sqrt{219}-6}{35}
Divide -12-4\sqrt{219} by 70.
t=\frac{2\sqrt{219}-6}{35} t=\frac{-2\sqrt{219}-6}{35}
The equation is now solved.
12t+35t^{2}=24
Multiply both sides of the equation by 2.
35t^{2}+12t=24
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{35t^{2}+12t}{35}=\frac{24}{35}
Divide both sides by 35.
t^{2}+\frac{12}{35}t=\frac{24}{35}
Dividing by 35 undoes the multiplication by 35.
t^{2}+\frac{12}{35}t+\left(\frac{6}{35}\right)^{2}=\frac{24}{35}+\left(\frac{6}{35}\right)^{2}
Divide \frac{12}{35}, the coefficient of the x term, by 2 to get \frac{6}{35}. Then add the square of \frac{6}{35} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}+\frac{12}{35}t+\frac{36}{1225}=\frac{24}{35}+\frac{36}{1225}
Square \frac{6}{35} by squaring both the numerator and the denominator of the fraction.
t^{2}+\frac{12}{35}t+\frac{36}{1225}=\frac{876}{1225}
Add \frac{24}{35} to \frac{36}{1225} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t+\frac{6}{35}\right)^{2}=\frac{876}{1225}
Factor t^{2}+\frac{12}{35}t+\frac{36}{1225}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+\frac{6}{35}\right)^{2}}=\sqrt{\frac{876}{1225}}
Take the square root of both sides of the equation.
t+\frac{6}{35}=\frac{2\sqrt{219}}{35} t+\frac{6}{35}=-\frac{2\sqrt{219}}{35}
Simplify.
t=\frac{2\sqrt{219}-6}{35} t=\frac{-2\sqrt{219}-6}{35}
Subtract \frac{6}{35} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}