Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

12t+3.5t^{2}=24
Multiply both sides of the equation by 2.
12t+3.5t^{2}-24=0
Subtract 24 from both sides.
3.5t^{2}+12t-24=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-12±\sqrt{12^{2}-4\times 3.5\left(-24\right)}}{2\times 3.5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3.5 for a, 12 for b, and -24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-12±\sqrt{144-4\times 3.5\left(-24\right)}}{2\times 3.5}
Square 12.
t=\frac{-12±\sqrt{144-14\left(-24\right)}}{2\times 3.5}
Multiply -4 times 3.5.
t=\frac{-12±\sqrt{144+336}}{2\times 3.5}
Multiply -14 times -24.
t=\frac{-12±\sqrt{480}}{2\times 3.5}
Add 144 to 336.
t=\frac{-12±4\sqrt{30}}{2\times 3.5}
Take the square root of 480.
t=\frac{-12±4\sqrt{30}}{7}
Multiply 2 times 3.5.
t=\frac{4\sqrt{30}-12}{7}
Now solve the equation t=\frac{-12±4\sqrt{30}}{7} when ± is plus. Add -12 to 4\sqrt{30}.
t=\frac{-4\sqrt{30}-12}{7}
Now solve the equation t=\frac{-12±4\sqrt{30}}{7} when ± is minus. Subtract 4\sqrt{30} from -12.
t=\frac{4\sqrt{30}-12}{7} t=\frac{-4\sqrt{30}-12}{7}
The equation is now solved.
12t+3.5t^{2}=24
Multiply both sides of the equation by 2.
3.5t^{2}+12t=24
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{3.5t^{2}+12t}{3.5}=\frac{24}{3.5}
Divide both sides of the equation by 3.5, which is the same as multiplying both sides by the reciprocal of the fraction.
t^{2}+\frac{12}{3.5}t=\frac{24}{3.5}
Dividing by 3.5 undoes the multiplication by 3.5.
t^{2}+\frac{24}{7}t=\frac{24}{3.5}
Divide 12 by 3.5 by multiplying 12 by the reciprocal of 3.5.
t^{2}+\frac{24}{7}t=\frac{48}{7}
Divide 24 by 3.5 by multiplying 24 by the reciprocal of 3.5.
t^{2}+\frac{24}{7}t+\frac{12}{7}^{2}=\frac{48}{7}+\frac{12}{7}^{2}
Divide \frac{24}{7}, the coefficient of the x term, by 2 to get \frac{12}{7}. Then add the square of \frac{12}{7} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}+\frac{24}{7}t+\frac{144}{49}=\frac{48}{7}+\frac{144}{49}
Square \frac{12}{7} by squaring both the numerator and the denominator of the fraction.
t^{2}+\frac{24}{7}t+\frac{144}{49}=\frac{480}{49}
Add \frac{48}{7} to \frac{144}{49} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t+\frac{12}{7}\right)^{2}=\frac{480}{49}
Factor t^{2}+\frac{24}{7}t+\frac{144}{49}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+\frac{12}{7}\right)^{2}}=\sqrt{\frac{480}{49}}
Take the square root of both sides of the equation.
t+\frac{12}{7}=\frac{4\sqrt{30}}{7} t+\frac{12}{7}=-\frac{4\sqrt{30}}{7}
Simplify.
t=\frac{4\sqrt{30}-12}{7} t=\frac{-4\sqrt{30}-12}{7}
Subtract \frac{12}{7} from both sides of the equation.