Evaluate
\frac{3\sqrt{5}}{5}+372567\approx 372568.341640787
Factor
\frac{3 {(\sqrt{5} + 620945)}}{5} = 372568.3416407865
Share
Copied to clipboard
372567+\frac{\sqrt{45}}{5}
Multiply 699 and 533 to get 372567.
372567+\frac{3\sqrt{5}}{5}
Factor 45=3^{2}\times 5. Rewrite the square root of the product \sqrt{3^{2}\times 5} as the product of square roots \sqrt{3^{2}}\sqrt{5}. Take the square root of 3^{2}.
\frac{372567\times 5}{5}+\frac{3\sqrt{5}}{5}
To add or subtract expressions, expand them to make their denominators the same. Multiply 372567 times \frac{5}{5}.
\frac{372567\times 5+3\sqrt{5}}{5}
Since \frac{372567\times 5}{5} and \frac{3\sqrt{5}}{5} have the same denominator, add them by adding their numerators.
\frac{1862835+3\sqrt{5}}{5}
Do the multiplications in 372567\times 5+3\sqrt{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}