Evaluate
1987
Factor
1987
Share
Copied to clipboard
\begin{array}{l}\phantom{350)}\phantom{1}\\350\overline{)695450}\\\end{array}
Use the 1^{st} digit 6 from dividend 695450
\begin{array}{l}\phantom{350)}0\phantom{2}\\350\overline{)695450}\\\end{array}
Since 6 is less than 350, use the next digit 9 from dividend 695450 and add 0 to the quotient
\begin{array}{l}\phantom{350)}0\phantom{3}\\350\overline{)695450}\\\end{array}
Use the 2^{nd} digit 9 from dividend 695450
\begin{array}{l}\phantom{350)}00\phantom{4}\\350\overline{)695450}\\\end{array}
Since 69 is less than 350, use the next digit 5 from dividend 695450 and add 0 to the quotient
\begin{array}{l}\phantom{350)}00\phantom{5}\\350\overline{)695450}\\\end{array}
Use the 3^{rd} digit 5 from dividend 695450
\begin{array}{l}\phantom{350)}001\phantom{6}\\350\overline{)695450}\\\phantom{350)}\underline{\phantom{}350\phantom{999}}\\\phantom{350)}345\\\end{array}
Find closest multiple of 350 to 695. We see that 1 \times 350 = 350 is the nearest. Now subtract 350 from 695 to get reminder 345. Add 1 to quotient.
\begin{array}{l}\phantom{350)}001\phantom{7}\\350\overline{)695450}\\\phantom{350)}\underline{\phantom{}350\phantom{999}}\\\phantom{350)}3454\\\end{array}
Use the 4^{th} digit 4 from dividend 695450
\begin{array}{l}\phantom{350)}0019\phantom{8}\\350\overline{)695450}\\\phantom{350)}\underline{\phantom{}350\phantom{999}}\\\phantom{350)}3454\\\phantom{350)}\underline{\phantom{}3150\phantom{99}}\\\phantom{350)9}304\\\end{array}
Find closest multiple of 350 to 3454. We see that 9 \times 350 = 3150 is the nearest. Now subtract 3150 from 3454 to get reminder 304. Add 9 to quotient.
\begin{array}{l}\phantom{350)}0019\phantom{9}\\350\overline{)695450}\\\phantom{350)}\underline{\phantom{}350\phantom{999}}\\\phantom{350)}3454\\\phantom{350)}\underline{\phantom{}3150\phantom{99}}\\\phantom{350)9}3045\\\end{array}
Use the 5^{th} digit 5 from dividend 695450
\begin{array}{l}\phantom{350)}00198\phantom{10}\\350\overline{)695450}\\\phantom{350)}\underline{\phantom{}350\phantom{999}}\\\phantom{350)}3454\\\phantom{350)}\underline{\phantom{}3150\phantom{99}}\\\phantom{350)9}3045\\\phantom{350)}\underline{\phantom{9}2800\phantom{9}}\\\phantom{350)99}245\\\end{array}
Find closest multiple of 350 to 3045. We see that 8 \times 350 = 2800 is the nearest. Now subtract 2800 from 3045 to get reminder 245. Add 8 to quotient.
\begin{array}{l}\phantom{350)}00198\phantom{11}\\350\overline{)695450}\\\phantom{350)}\underline{\phantom{}350\phantom{999}}\\\phantom{350)}3454\\\phantom{350)}\underline{\phantom{}3150\phantom{99}}\\\phantom{350)9}3045\\\phantom{350)}\underline{\phantom{9}2800\phantom{9}}\\\phantom{350)99}2450\\\end{array}
Use the 6^{th} digit 0 from dividend 695450
\begin{array}{l}\phantom{350)}001987\phantom{12}\\350\overline{)695450}\\\phantom{350)}\underline{\phantom{}350\phantom{999}}\\\phantom{350)}3454\\\phantom{350)}\underline{\phantom{}3150\phantom{99}}\\\phantom{350)9}3045\\\phantom{350)}\underline{\phantom{9}2800\phantom{9}}\\\phantom{350)99}2450\\\phantom{350)}\underline{\phantom{99}2450\phantom{}}\\\phantom{350)999999}0\\\end{array}
Find closest multiple of 350 to 2450. We see that 7 \times 350 = 2450 is the nearest. Now subtract 2450 from 2450 to get reminder 0. Add 7 to quotient.
\text{Quotient: }1987 \text{Reminder: }0
Since 0 is less than 350, stop the division. The reminder is 0. The topmost line 001987 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1987.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}