Evaluate
\frac{173}{20}=8.65
Factor
\frac{173}{2 ^ {2} \cdot 5} = 8\frac{13}{20} = 8.65
Share
Copied to clipboard
\begin{array}{l}\phantom{80)}\phantom{1}\\80\overline{)692}\\\end{array}
Use the 1^{st} digit 6 from dividend 692
\begin{array}{l}\phantom{80)}0\phantom{2}\\80\overline{)692}\\\end{array}
Since 6 is less than 80, use the next digit 9 from dividend 692 and add 0 to the quotient
\begin{array}{l}\phantom{80)}0\phantom{3}\\80\overline{)692}\\\end{array}
Use the 2^{nd} digit 9 from dividend 692
\begin{array}{l}\phantom{80)}00\phantom{4}\\80\overline{)692}\\\end{array}
Since 69 is less than 80, use the next digit 2 from dividend 692 and add 0 to the quotient
\begin{array}{l}\phantom{80)}00\phantom{5}\\80\overline{)692}\\\end{array}
Use the 3^{rd} digit 2 from dividend 692
\begin{array}{l}\phantom{80)}008\phantom{6}\\80\overline{)692}\\\phantom{80)}\underline{\phantom{}640\phantom{}}\\\phantom{80)9}52\\\end{array}
Find closest multiple of 80 to 692. We see that 8 \times 80 = 640 is the nearest. Now subtract 640 from 692 to get reminder 52. Add 8 to quotient.
\text{Quotient: }8 \text{Reminder: }52
Since 52 is less than 80, stop the division. The reminder is 52. The topmost line 008 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}