Evaluate
\frac{138}{65}\approx 2.123076923
Factor
\frac{2 \cdot 3 \cdot 23}{5 \cdot 13} = 2\frac{8}{65} = 2.123076923076923
Share
Copied to clipboard
\begin{array}{l}\phantom{325)}\phantom{1}\\325\overline{)690}\\\end{array}
Use the 1^{st} digit 6 from dividend 690
\begin{array}{l}\phantom{325)}0\phantom{2}\\325\overline{)690}\\\end{array}
Since 6 is less than 325, use the next digit 9 from dividend 690 and add 0 to the quotient
\begin{array}{l}\phantom{325)}0\phantom{3}\\325\overline{)690}\\\end{array}
Use the 2^{nd} digit 9 from dividend 690
\begin{array}{l}\phantom{325)}00\phantom{4}\\325\overline{)690}\\\end{array}
Since 69 is less than 325, use the next digit 0 from dividend 690 and add 0 to the quotient
\begin{array}{l}\phantom{325)}00\phantom{5}\\325\overline{)690}\\\end{array}
Use the 3^{rd} digit 0 from dividend 690
\begin{array}{l}\phantom{325)}002\phantom{6}\\325\overline{)690}\\\phantom{325)}\underline{\phantom{}650\phantom{}}\\\phantom{325)9}40\\\end{array}
Find closest multiple of 325 to 690. We see that 2 \times 325 = 650 is the nearest. Now subtract 650 from 690 to get reminder 40. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }40
Since 40 is less than 325, stop the division. The reminder is 40. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}