Evaluate
\frac{23}{21}\approx 1.095238095
Factor
\frac{23}{3 \cdot 7} = 1\frac{2}{21} = 1.0952380952380953
Share
Copied to clipboard
\begin{array}{l}\phantom{63)}\phantom{1}\\63\overline{)69}\\\end{array}
Use the 1^{st} digit 6 from dividend 69
\begin{array}{l}\phantom{63)}0\phantom{2}\\63\overline{)69}\\\end{array}
Since 6 is less than 63, use the next digit 9 from dividend 69 and add 0 to the quotient
\begin{array}{l}\phantom{63)}0\phantom{3}\\63\overline{)69}\\\end{array}
Use the 2^{nd} digit 9 from dividend 69
\begin{array}{l}\phantom{63)}01\phantom{4}\\63\overline{)69}\\\phantom{63)}\underline{\phantom{}63\phantom{}}\\\phantom{63)9}6\\\end{array}
Find closest multiple of 63 to 69. We see that 1 \times 63 = 63 is the nearest. Now subtract 63 from 69 to get reminder 6. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }6
Since 6 is less than 63, stop the division. The reminder is 6. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}