69 + \frac { w \cdot 0,5 } { 60 } = 72 - \frac { w } { b 0 }
Solve for b_0
b_{0}=-\frac{120w}{w-360}
w\neq 0\text{ and }w\neq 360
Solve for w
w=\frac{360b_{0}}{b_{0}+120}
b_{0}\neq -120\text{ and }b_{0}\neq 0
Share
Copied to clipboard
60b_{0}\times 69+b_{0}w\times 0,5=60b_{0}\times 72-60w
Variable b_{0} cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 60b_{0}, the least common multiple of 60;b_{0}.
4140b_{0}+b_{0}w\times 0,5=60b_{0}\times 72-60w
Multiply 60 and 69 to get 4140.
4140b_{0}+b_{0}w\times 0,5=4320b_{0}-60w
Multiply 60 and 72 to get 4320.
4140b_{0}+b_{0}w\times 0,5-4320b_{0}=-60w
Subtract 4320b_{0} from both sides.
-180b_{0}+b_{0}w\times 0,5=-60w
Combine 4140b_{0} and -4320b_{0} to get -180b_{0}.
\left(-180+w\times 0,5\right)b_{0}=-60w
Combine all terms containing b_{0}.
\left(\frac{w}{2}-180\right)b_{0}=-60w
The equation is in standard form.
\frac{\left(\frac{w}{2}-180\right)b_{0}}{\frac{w}{2}-180}=-\frac{60w}{\frac{w}{2}-180}
Divide both sides by -180+0,5w.
b_{0}=-\frac{60w}{\frac{w}{2}-180}
Dividing by -180+0,5w undoes the multiplication by -180+0,5w.
b_{0}=-\frac{120w}{w-360}
Divide -60w by -180+0,5w.
b_{0}=-\frac{120w}{w-360}\text{, }b_{0}\neq 0
Variable b_{0} cannot be equal to 0.
60b_{0}\times 69+b_{0}w\times 0,5=60b_{0}\times 72-60w
Multiply both sides of the equation by 60b_{0}, the least common multiple of 60;b_{0}.
4140b_{0}+b_{0}w\times 0,5=60b_{0}\times 72-60w
Multiply 60 and 69 to get 4140.
4140b_{0}+b_{0}w\times 0,5=4320b_{0}-60w
Multiply 60 and 72 to get 4320.
4140b_{0}+b_{0}w\times 0,5+60w=4320b_{0}
Add 60w to both sides.
b_{0}w\times 0,5+60w=4320b_{0}-4140b_{0}
Subtract 4140b_{0} from both sides.
b_{0}w\times 0,5+60w=180b_{0}
Combine 4320b_{0} and -4140b_{0} to get 180b_{0}.
\left(b_{0}\times 0,5+60\right)w=180b_{0}
Combine all terms containing w.
\left(\frac{b_{0}}{2}+60\right)w=180b_{0}
The equation is in standard form.
\frac{\left(\frac{b_{0}}{2}+60\right)w}{\frac{b_{0}}{2}+60}=\frac{180b_{0}}{\frac{b_{0}}{2}+60}
Divide both sides by 0,5b_{0}+60.
w=\frac{180b_{0}}{\frac{b_{0}}{2}+60}
Dividing by 0,5b_{0}+60 undoes the multiplication by 0,5b_{0}+60.
w=\frac{360b_{0}}{b_{0}+120}
Divide 180b_{0} by 0,5b_{0}+60.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}