Evaluate
\frac{137}{15}\approx 9.133333333
Factor
\frac{137}{3 \cdot 5} = 9\frac{2}{15} = 9.133333333333333
Share
Copied to clipboard
\begin{array}{l}\phantom{75)}\phantom{1}\\75\overline{)685}\\\end{array}
Use the 1^{st} digit 6 from dividend 685
\begin{array}{l}\phantom{75)}0\phantom{2}\\75\overline{)685}\\\end{array}
Since 6 is less than 75, use the next digit 8 from dividend 685 and add 0 to the quotient
\begin{array}{l}\phantom{75)}0\phantom{3}\\75\overline{)685}\\\end{array}
Use the 2^{nd} digit 8 from dividend 685
\begin{array}{l}\phantom{75)}00\phantom{4}\\75\overline{)685}\\\end{array}
Since 68 is less than 75, use the next digit 5 from dividend 685 and add 0 to the quotient
\begin{array}{l}\phantom{75)}00\phantom{5}\\75\overline{)685}\\\end{array}
Use the 3^{rd} digit 5 from dividend 685
\begin{array}{l}\phantom{75)}009\phantom{6}\\75\overline{)685}\\\phantom{75)}\underline{\phantom{}675\phantom{}}\\\phantom{75)9}10\\\end{array}
Find closest multiple of 75 to 685. We see that 9 \times 75 = 675 is the nearest. Now subtract 675 from 685 to get reminder 10. Add 9 to quotient.
\text{Quotient: }9 \text{Reminder: }10
Since 10 is less than 75, stop the division. The reminder is 10. The topmost line 009 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}