Evaluate
22
Factor
2\times 11
Share
Copied to clipboard
\begin{array}{l}\phantom{31)}\phantom{1}\\31\overline{)682}\\\end{array}
Use the 1^{st} digit 6 from dividend 682
\begin{array}{l}\phantom{31)}0\phantom{2}\\31\overline{)682}\\\end{array}
Since 6 is less than 31, use the next digit 8 from dividend 682 and add 0 to the quotient
\begin{array}{l}\phantom{31)}0\phantom{3}\\31\overline{)682}\\\end{array}
Use the 2^{nd} digit 8 from dividend 682
\begin{array}{l}\phantom{31)}02\phantom{4}\\31\overline{)682}\\\phantom{31)}\underline{\phantom{}62\phantom{9}}\\\phantom{31)9}6\\\end{array}
Find closest multiple of 31 to 68. We see that 2 \times 31 = 62 is the nearest. Now subtract 62 from 68 to get reminder 6. Add 2 to quotient.
\begin{array}{l}\phantom{31)}02\phantom{5}\\31\overline{)682}\\\phantom{31)}\underline{\phantom{}62\phantom{9}}\\\phantom{31)9}62\\\end{array}
Use the 3^{rd} digit 2 from dividend 682
\begin{array}{l}\phantom{31)}022\phantom{6}\\31\overline{)682}\\\phantom{31)}\underline{\phantom{}62\phantom{9}}\\\phantom{31)9}62\\\phantom{31)}\underline{\phantom{9}62\phantom{}}\\\phantom{31)999}0\\\end{array}
Find closest multiple of 31 to 62. We see that 2 \times 31 = 62 is the nearest. Now subtract 62 from 62 to get reminder 0. Add 2 to quotient.
\text{Quotient: }22 \text{Reminder: }0
Since 0 is less than 31, stop the division. The reminder is 0. The topmost line 022 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 22.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}