Factor
100\left(13a^{2}+8a+6800\right)
Evaluate
1300a^{2}+800a+680000
Share
Copied to clipboard
100\left(6800+13a^{2}+8a\right)
Factor out 100. Polynomial 6800+13a^{2}+8a is not factored since it does not have any rational roots.
1300a^{2}+800a+680000=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
a=\frac{-800±\sqrt{800^{2}-4\times 1300\times 680000}}{2\times 1300}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-800±\sqrt{640000-4\times 1300\times 680000}}{2\times 1300}
Square 800.
a=\frac{-800±\sqrt{640000-5200\times 680000}}{2\times 1300}
Multiply -4 times 1300.
a=\frac{-800±\sqrt{640000-3536000000}}{2\times 1300}
Multiply -5200 times 680000.
a=\frac{-800±\sqrt{-3535360000}}{2\times 1300}
Add 640000 to -3536000000.
1300a^{2}+800a+680000
Since the square root of a negative number is not defined in the real field, there are no solutions. Quadratic polynomial cannot be factored.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}