Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

100\left(6800+13a^{2}+8a\right)
Factor out 100. Polynomial 6800+13a^{2}+8a is not factored since it does not have any rational roots.
1300a^{2}+800a+680000=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
a=\frac{-800±\sqrt{800^{2}-4\times 1300\times 680000}}{2\times 1300}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-800±\sqrt{640000-4\times 1300\times 680000}}{2\times 1300}
Square 800.
a=\frac{-800±\sqrt{640000-5200\times 680000}}{2\times 1300}
Multiply -4 times 1300.
a=\frac{-800±\sqrt{640000-3536000000}}{2\times 1300}
Multiply -5200 times 680000.
a=\frac{-800±\sqrt{-3535360000}}{2\times 1300}
Add 640000 to -3536000000.
1300a^{2}+800a+680000
Since the square root of a negative number is not defined in the real field, there are no solutions. Quadratic polynomial cannot be factored.