Evaluate
\frac{170}{7}\approx 24.285714286
Factor
\frac{2 \cdot 5 \cdot 17}{7} = 24\frac{2}{7} = 24.285714285714285
Share
Copied to clipboard
\begin{array}{l}\phantom{28)}\phantom{1}\\28\overline{)680}\\\end{array}
Use the 1^{st} digit 6 from dividend 680
\begin{array}{l}\phantom{28)}0\phantom{2}\\28\overline{)680}\\\end{array}
Since 6 is less than 28, use the next digit 8 from dividend 680 and add 0 to the quotient
\begin{array}{l}\phantom{28)}0\phantom{3}\\28\overline{)680}\\\end{array}
Use the 2^{nd} digit 8 from dividend 680
\begin{array}{l}\phantom{28)}02\phantom{4}\\28\overline{)680}\\\phantom{28)}\underline{\phantom{}56\phantom{9}}\\\phantom{28)}12\\\end{array}
Find closest multiple of 28 to 68. We see that 2 \times 28 = 56 is the nearest. Now subtract 56 from 68 to get reminder 12. Add 2 to quotient.
\begin{array}{l}\phantom{28)}02\phantom{5}\\28\overline{)680}\\\phantom{28)}\underline{\phantom{}56\phantom{9}}\\\phantom{28)}120\\\end{array}
Use the 3^{rd} digit 0 from dividend 680
\begin{array}{l}\phantom{28)}024\phantom{6}\\28\overline{)680}\\\phantom{28)}\underline{\phantom{}56\phantom{9}}\\\phantom{28)}120\\\phantom{28)}\underline{\phantom{}112\phantom{}}\\\phantom{28)99}8\\\end{array}
Find closest multiple of 28 to 120. We see that 4 \times 28 = 112 is the nearest. Now subtract 112 from 120 to get reminder 8. Add 4 to quotient.
\text{Quotient: }24 \text{Reminder: }8
Since 8 is less than 28, stop the division. The reminder is 8. The topmost line 024 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 24.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}