Evaluate
\frac{68}{23}\approx 2.956521739
Factor
\frac{2 ^ {2} \cdot 17}{23} = 2\frac{22}{23} = 2.9565217391304346
Share
Copied to clipboard
\begin{array}{l}\phantom{23)}\phantom{1}\\23\overline{)68}\\\end{array}
Use the 1^{st} digit 6 from dividend 68
\begin{array}{l}\phantom{23)}0\phantom{2}\\23\overline{)68}\\\end{array}
Since 6 is less than 23, use the next digit 8 from dividend 68 and add 0 to the quotient
\begin{array}{l}\phantom{23)}0\phantom{3}\\23\overline{)68}\\\end{array}
Use the 2^{nd} digit 8 from dividend 68
\begin{array}{l}\phantom{23)}02\phantom{4}\\23\overline{)68}\\\phantom{23)}\underline{\phantom{}46\phantom{}}\\\phantom{23)}22\\\end{array}
Find closest multiple of 23 to 68. We see that 2 \times 23 = 46 is the nearest. Now subtract 46 from 68 to get reminder 22. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }22
Since 22 is less than 23, stop the division. The reminder is 22. The topmost line 02 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}