Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

6794+x^{2}-165x=0
Subtract 165x from both sides.
x^{2}-165x+6794=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-165\right)±\sqrt{\left(-165\right)^{2}-4\times 6794}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -165 for b, and 6794 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-165\right)±\sqrt{27225-4\times 6794}}{2}
Square -165.
x=\frac{-\left(-165\right)±\sqrt{27225-27176}}{2}
Multiply -4 times 6794.
x=\frac{-\left(-165\right)±\sqrt{49}}{2}
Add 27225 to -27176.
x=\frac{-\left(-165\right)±7}{2}
Take the square root of 49.
x=\frac{165±7}{2}
The opposite of -165 is 165.
x=\frac{172}{2}
Now solve the equation x=\frac{165±7}{2} when ± is plus. Add 165 to 7.
x=86
Divide 172 by 2.
x=\frac{158}{2}
Now solve the equation x=\frac{165±7}{2} when ± is minus. Subtract 7 from 165.
x=79
Divide 158 by 2.
x=86 x=79
The equation is now solved.
6794+x^{2}-165x=0
Subtract 165x from both sides.
x^{2}-165x=-6794
Subtract 6794 from both sides. Anything subtracted from zero gives its negation.
x^{2}-165x+\left(-\frac{165}{2}\right)^{2}=-6794+\left(-\frac{165}{2}\right)^{2}
Divide -165, the coefficient of the x term, by 2 to get -\frac{165}{2}. Then add the square of -\frac{165}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-165x+\frac{27225}{4}=-6794+\frac{27225}{4}
Square -\frac{165}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-165x+\frac{27225}{4}=\frac{49}{4}
Add -6794 to \frac{27225}{4}.
\left(x-\frac{165}{2}\right)^{2}=\frac{49}{4}
Factor x^{2}-165x+\frac{27225}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{165}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Take the square root of both sides of the equation.
x-\frac{165}{2}=\frac{7}{2} x-\frac{165}{2}=-\frac{7}{2}
Simplify.
x=86 x=79
Add \frac{165}{2} to both sides of the equation.