Evaluate
\frac{67699}{58}\approx 1167.224137931
Factor
\frac{67699}{2 \cdot 29} = 1167\frac{13}{58} = 1167.2241379310344
Share
Copied to clipboard
\begin{array}{l}\phantom{58)}\phantom{1}\\58\overline{)67699}\\\end{array}
Use the 1^{st} digit 6 from dividend 67699
\begin{array}{l}\phantom{58)}0\phantom{2}\\58\overline{)67699}\\\end{array}
Since 6 is less than 58, use the next digit 7 from dividend 67699 and add 0 to the quotient
\begin{array}{l}\phantom{58)}0\phantom{3}\\58\overline{)67699}\\\end{array}
Use the 2^{nd} digit 7 from dividend 67699
\begin{array}{l}\phantom{58)}01\phantom{4}\\58\overline{)67699}\\\phantom{58)}\underline{\phantom{}58\phantom{999}}\\\phantom{58)9}9\\\end{array}
Find closest multiple of 58 to 67. We see that 1 \times 58 = 58 is the nearest. Now subtract 58 from 67 to get reminder 9. Add 1 to quotient.
\begin{array}{l}\phantom{58)}01\phantom{5}\\58\overline{)67699}\\\phantom{58)}\underline{\phantom{}58\phantom{999}}\\\phantom{58)9}96\\\end{array}
Use the 3^{rd} digit 6 from dividend 67699
\begin{array}{l}\phantom{58)}011\phantom{6}\\58\overline{)67699}\\\phantom{58)}\underline{\phantom{}58\phantom{999}}\\\phantom{58)9}96\\\phantom{58)}\underline{\phantom{9}58\phantom{99}}\\\phantom{58)9}38\\\end{array}
Find closest multiple of 58 to 96. We see that 1 \times 58 = 58 is the nearest. Now subtract 58 from 96 to get reminder 38. Add 1 to quotient.
\begin{array}{l}\phantom{58)}011\phantom{7}\\58\overline{)67699}\\\phantom{58)}\underline{\phantom{}58\phantom{999}}\\\phantom{58)9}96\\\phantom{58)}\underline{\phantom{9}58\phantom{99}}\\\phantom{58)9}389\\\end{array}
Use the 4^{th} digit 9 from dividend 67699
\begin{array}{l}\phantom{58)}0116\phantom{8}\\58\overline{)67699}\\\phantom{58)}\underline{\phantom{}58\phantom{999}}\\\phantom{58)9}96\\\phantom{58)}\underline{\phantom{9}58\phantom{99}}\\\phantom{58)9}389\\\phantom{58)}\underline{\phantom{9}348\phantom{9}}\\\phantom{58)99}41\\\end{array}
Find closest multiple of 58 to 389. We see that 6 \times 58 = 348 is the nearest. Now subtract 348 from 389 to get reminder 41. Add 6 to quotient.
\begin{array}{l}\phantom{58)}0116\phantom{9}\\58\overline{)67699}\\\phantom{58)}\underline{\phantom{}58\phantom{999}}\\\phantom{58)9}96\\\phantom{58)}\underline{\phantom{9}58\phantom{99}}\\\phantom{58)9}389\\\phantom{58)}\underline{\phantom{9}348\phantom{9}}\\\phantom{58)99}419\\\end{array}
Use the 5^{th} digit 9 from dividend 67699
\begin{array}{l}\phantom{58)}01167\phantom{10}\\58\overline{)67699}\\\phantom{58)}\underline{\phantom{}58\phantom{999}}\\\phantom{58)9}96\\\phantom{58)}\underline{\phantom{9}58\phantom{99}}\\\phantom{58)9}389\\\phantom{58)}\underline{\phantom{9}348\phantom{9}}\\\phantom{58)99}419\\\phantom{58)}\underline{\phantom{99}406\phantom{}}\\\phantom{58)999}13\\\end{array}
Find closest multiple of 58 to 419. We see that 7 \times 58 = 406 is the nearest. Now subtract 406 from 419 to get reminder 13. Add 7 to quotient.
\text{Quotient: }1167 \text{Reminder: }13
Since 13 is less than 58, stop the division. The reminder is 13. The topmost line 01167 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1167.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}