Evaluate
\frac{676}{81}\approx 8.345679012
Factor
\frac{2 ^ {2} \cdot 13 ^ {2}}{3 ^ {4}} = 8\frac{28}{81} = 8.345679012345679
Share
Copied to clipboard
\begin{array}{l}\phantom{81)}\phantom{1}\\81\overline{)676}\\\end{array}
Use the 1^{st} digit 6 from dividend 676
\begin{array}{l}\phantom{81)}0\phantom{2}\\81\overline{)676}\\\end{array}
Since 6 is less than 81, use the next digit 7 from dividend 676 and add 0 to the quotient
\begin{array}{l}\phantom{81)}0\phantom{3}\\81\overline{)676}\\\end{array}
Use the 2^{nd} digit 7 from dividend 676
\begin{array}{l}\phantom{81)}00\phantom{4}\\81\overline{)676}\\\end{array}
Since 67 is less than 81, use the next digit 6 from dividend 676 and add 0 to the quotient
\begin{array}{l}\phantom{81)}00\phantom{5}\\81\overline{)676}\\\end{array}
Use the 3^{rd} digit 6 from dividend 676
\begin{array}{l}\phantom{81)}008\phantom{6}\\81\overline{)676}\\\phantom{81)}\underline{\phantom{}648\phantom{}}\\\phantom{81)9}28\\\end{array}
Find closest multiple of 81 to 676. We see that 8 \times 81 = 648 is the nearest. Now subtract 648 from 676 to get reminder 28. Add 8 to quotient.
\text{Quotient: }8 \text{Reminder: }28
Since 28 is less than 81, stop the division. The reminder is 28. The topmost line 008 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}