Evaluate
\frac{28}{3}\approx 9.333333333
Factor
\frac{2 ^ {2} \cdot 7}{3} = 9\frac{1}{3} = 9.333333333333334
Share
Copied to clipboard
\begin{array}{l}\phantom{72)}\phantom{1}\\72\overline{)672}\\\end{array}
Use the 1^{st} digit 6 from dividend 672
\begin{array}{l}\phantom{72)}0\phantom{2}\\72\overline{)672}\\\end{array}
Since 6 is less than 72, use the next digit 7 from dividend 672 and add 0 to the quotient
\begin{array}{l}\phantom{72)}0\phantom{3}\\72\overline{)672}\\\end{array}
Use the 2^{nd} digit 7 from dividend 672
\begin{array}{l}\phantom{72)}00\phantom{4}\\72\overline{)672}\\\end{array}
Since 67 is less than 72, use the next digit 2 from dividend 672 and add 0 to the quotient
\begin{array}{l}\phantom{72)}00\phantom{5}\\72\overline{)672}\\\end{array}
Use the 3^{rd} digit 2 from dividend 672
\begin{array}{l}\phantom{72)}009\phantom{6}\\72\overline{)672}\\\phantom{72)}\underline{\phantom{}648\phantom{}}\\\phantom{72)9}24\\\end{array}
Find closest multiple of 72 to 672. We see that 9 \times 72 = 648 is the nearest. Now subtract 648 from 672 to get reminder 24. Add 9 to quotient.
\text{Quotient: }9 \text{Reminder: }24
Since 24 is less than 72, stop the division. The reminder is 24. The topmost line 009 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}