Evaluate
\frac{671}{90}\approx 7.455555556
Factor
\frac{11 \cdot 61}{2 \cdot 3 ^ {2} \cdot 5} = 7\frac{41}{90} = 7.455555555555556
Share
Copied to clipboard
\begin{array}{l}\phantom{90)}\phantom{1}\\90\overline{)671}\\\end{array}
Use the 1^{st} digit 6 from dividend 671
\begin{array}{l}\phantom{90)}0\phantom{2}\\90\overline{)671}\\\end{array}
Since 6 is less than 90, use the next digit 7 from dividend 671 and add 0 to the quotient
\begin{array}{l}\phantom{90)}0\phantom{3}\\90\overline{)671}\\\end{array}
Use the 2^{nd} digit 7 from dividend 671
\begin{array}{l}\phantom{90)}00\phantom{4}\\90\overline{)671}\\\end{array}
Since 67 is less than 90, use the next digit 1 from dividend 671 and add 0 to the quotient
\begin{array}{l}\phantom{90)}00\phantom{5}\\90\overline{)671}\\\end{array}
Use the 3^{rd} digit 1 from dividend 671
\begin{array}{l}\phantom{90)}007\phantom{6}\\90\overline{)671}\\\phantom{90)}\underline{\phantom{}630\phantom{}}\\\phantom{90)9}41\\\end{array}
Find closest multiple of 90 to 671. We see that 7 \times 90 = 630 is the nearest. Now subtract 630 from 671 to get reminder 41. Add 7 to quotient.
\text{Quotient: }7 \text{Reminder: }41
Since 41 is less than 90, stop the division. The reminder is 41. The topmost line 007 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}