Evaluate
\frac{16750}{13}\approx 1288.461538462
Factor
\frac{2 \cdot 5 ^ {3} \cdot 67}{13} = 1288\frac{6}{13} = 1288.4615384615386
Share
Copied to clipboard
\begin{array}{l}\phantom{52)}\phantom{1}\\52\overline{)67000}\\\end{array}
Use the 1^{st} digit 6 from dividend 67000
\begin{array}{l}\phantom{52)}0\phantom{2}\\52\overline{)67000}\\\end{array}
Since 6 is less than 52, use the next digit 7 from dividend 67000 and add 0 to the quotient
\begin{array}{l}\phantom{52)}0\phantom{3}\\52\overline{)67000}\\\end{array}
Use the 2^{nd} digit 7 from dividend 67000
\begin{array}{l}\phantom{52)}01\phantom{4}\\52\overline{)67000}\\\phantom{52)}\underline{\phantom{}52\phantom{999}}\\\phantom{52)}15\\\end{array}
Find closest multiple of 52 to 67. We see that 1 \times 52 = 52 is the nearest. Now subtract 52 from 67 to get reminder 15. Add 1 to quotient.
\begin{array}{l}\phantom{52)}01\phantom{5}\\52\overline{)67000}\\\phantom{52)}\underline{\phantom{}52\phantom{999}}\\\phantom{52)}150\\\end{array}
Use the 3^{rd} digit 0 from dividend 67000
\begin{array}{l}\phantom{52)}012\phantom{6}\\52\overline{)67000}\\\phantom{52)}\underline{\phantom{}52\phantom{999}}\\\phantom{52)}150\\\phantom{52)}\underline{\phantom{}104\phantom{99}}\\\phantom{52)9}46\\\end{array}
Find closest multiple of 52 to 150. We see that 2 \times 52 = 104 is the nearest. Now subtract 104 from 150 to get reminder 46. Add 2 to quotient.
\begin{array}{l}\phantom{52)}012\phantom{7}\\52\overline{)67000}\\\phantom{52)}\underline{\phantom{}52\phantom{999}}\\\phantom{52)}150\\\phantom{52)}\underline{\phantom{}104\phantom{99}}\\\phantom{52)9}460\\\end{array}
Use the 4^{th} digit 0 from dividend 67000
\begin{array}{l}\phantom{52)}0128\phantom{8}\\52\overline{)67000}\\\phantom{52)}\underline{\phantom{}52\phantom{999}}\\\phantom{52)}150\\\phantom{52)}\underline{\phantom{}104\phantom{99}}\\\phantom{52)9}460\\\phantom{52)}\underline{\phantom{9}416\phantom{9}}\\\phantom{52)99}44\\\end{array}
Find closest multiple of 52 to 460. We see that 8 \times 52 = 416 is the nearest. Now subtract 416 from 460 to get reminder 44. Add 8 to quotient.
\begin{array}{l}\phantom{52)}0128\phantom{9}\\52\overline{)67000}\\\phantom{52)}\underline{\phantom{}52\phantom{999}}\\\phantom{52)}150\\\phantom{52)}\underline{\phantom{}104\phantom{99}}\\\phantom{52)9}460\\\phantom{52)}\underline{\phantom{9}416\phantom{9}}\\\phantom{52)99}440\\\end{array}
Use the 5^{th} digit 0 from dividend 67000
\begin{array}{l}\phantom{52)}01288\phantom{10}\\52\overline{)67000}\\\phantom{52)}\underline{\phantom{}52\phantom{999}}\\\phantom{52)}150\\\phantom{52)}\underline{\phantom{}104\phantom{99}}\\\phantom{52)9}460\\\phantom{52)}\underline{\phantom{9}416\phantom{9}}\\\phantom{52)99}440\\\phantom{52)}\underline{\phantom{99}416\phantom{}}\\\phantom{52)999}24\\\end{array}
Find closest multiple of 52 to 440. We see that 8 \times 52 = 416 is the nearest. Now subtract 416 from 440 to get reminder 24. Add 8 to quotient.
\text{Quotient: }1288 \text{Reminder: }24
Since 24 is less than 52, stop the division. The reminder is 24. The topmost line 01288 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1288.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}