Solve for g (complex solution)
\left\{\begin{matrix}\\g=0\text{, }&\text{unconditionally}\\g\in \mathrm{C}\text{, }&k=-67\end{matrix}\right.
Solve for k (complex solution)
\left\{\begin{matrix}\\k=-67\text{, }&\text{unconditionally}\\k\in \mathrm{C}\text{, }&g=0\end{matrix}\right.
Solve for g
\left\{\begin{matrix}\\g=0\text{, }&\text{unconditionally}\\g\in \mathrm{R}\text{, }&k=-67\end{matrix}\right.
Solve for k
\left\{\begin{matrix}\\k=-67\text{, }&\text{unconditionally}\\k\in \mathrm{R}\text{, }&g=0\end{matrix}\right.
Share
Copied to clipboard
67g-\left(-k\right)g=0
Subtract \left(-k\right)g from both sides.
67g+kg=0
Multiply -1 and -1 to get 1.
\left(67+k\right)g=0
Combine all terms containing g.
\left(k+67\right)g=0
The equation is in standard form.
g=0
Divide 0 by 67+k.
\left(-k\right)g=67g
Swap sides so that all variable terms are on the left hand side.
-gk=67g
Reorder the terms.
\left(-g\right)k=67g
The equation is in standard form.
\frac{\left(-g\right)k}{-g}=\frac{67g}{-g}
Divide both sides by -g.
k=\frac{67g}{-g}
Dividing by -g undoes the multiplication by -g.
k=-67
Divide 67g by -g.
67g-\left(-k\right)g=0
Subtract \left(-k\right)g from both sides.
67g+kg=0
Multiply -1 and -1 to get 1.
\left(67+k\right)g=0
Combine all terms containing g.
\left(k+67\right)g=0
The equation is in standard form.
g=0
Divide 0 by 67+k.
\left(-k\right)g=67g
Swap sides so that all variable terms are on the left hand side.
-gk=67g
Reorder the terms.
\left(-g\right)k=67g
The equation is in standard form.
\frac{\left(-g\right)k}{-g}=\frac{67g}{-g}
Divide both sides by -g.
k=\frac{67g}{-g}
Dividing by -g undoes the multiplication by -g.
k=-67
Divide 67g by -g.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}