Solve for n
n = \frac{\sqrt{10465} + 1}{2} \approx 51.649291295
n=\frac{1-\sqrt{10465}}{2}\approx -50.649291295
Share
Copied to clipboard
1332\times 2-48=n\left(n-1\right)
Multiply both sides of the equation by 2.
2664-48=n\left(n-1\right)
Multiply 1332 and 2 to get 2664.
2616=n\left(n-1\right)
Subtract 48 from 2664 to get 2616.
2616=n^{2}-n
Use the distributive property to multiply n by n-1.
n^{2}-n=2616
Swap sides so that all variable terms are on the left hand side.
n^{2}-n-2616=0
Subtract 2616 from both sides.
n=\frac{-\left(-1\right)±\sqrt{1-4\left(-2616\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -1 for b, and -2616 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-1\right)±\sqrt{1+10464}}{2}
Multiply -4 times -2616.
n=\frac{-\left(-1\right)±\sqrt{10465}}{2}
Add 1 to 10464.
n=\frac{1±\sqrt{10465}}{2}
The opposite of -1 is 1.
n=\frac{\sqrt{10465}+1}{2}
Now solve the equation n=\frac{1±\sqrt{10465}}{2} when ± is plus. Add 1 to \sqrt{10465}.
n=\frac{1-\sqrt{10465}}{2}
Now solve the equation n=\frac{1±\sqrt{10465}}{2} when ± is minus. Subtract \sqrt{10465} from 1.
n=\frac{\sqrt{10465}+1}{2} n=\frac{1-\sqrt{10465}}{2}
The equation is now solved.
1332\times 2-48=n\left(n-1\right)
Multiply both sides of the equation by 2.
2664-48=n\left(n-1\right)
Multiply 1332 and 2 to get 2664.
2616=n\left(n-1\right)
Subtract 48 from 2664 to get 2616.
2616=n^{2}-n
Use the distributive property to multiply n by n-1.
n^{2}-n=2616
Swap sides so that all variable terms are on the left hand side.
n^{2}-n+\left(-\frac{1}{2}\right)^{2}=2616+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}-n+\frac{1}{4}=2616+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
n^{2}-n+\frac{1}{4}=\frac{10465}{4}
Add 2616 to \frac{1}{4}.
\left(n-\frac{1}{2}\right)^{2}=\frac{10465}{4}
Factor n^{2}-n+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{1}{2}\right)^{2}}=\sqrt{\frac{10465}{4}}
Take the square root of both sides of the equation.
n-\frac{1}{2}=\frac{\sqrt{10465}}{2} n-\frac{1}{2}=-\frac{\sqrt{10465}}{2}
Simplify.
n=\frac{\sqrt{10465}+1}{2} n=\frac{1-\sqrt{10465}}{2}
Add \frac{1}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}