Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

6650=6000+100x-0.5x\left(60+x\right)
Use the distributive property to multiply 100 by 60+x.
6000+100x-0.5x\left(60+x\right)=6650
Swap sides so that all variable terms are on the left hand side.
6000+100x-0.5x\left(60+x\right)-6650=0
Subtract 6650 from both sides.
6000+100x-30x-0.5x^{2}-6650=0
Use the distributive property to multiply -0.5x by 60+x.
6000+70x-0.5x^{2}-6650=0
Combine 100x and -30x to get 70x.
-650+70x-0.5x^{2}=0
Subtract 6650 from 6000 to get -650.
-0.5x^{2}+70x-650=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-70±\sqrt{70^{2}-4\left(-0.5\right)\left(-650\right)}}{2\left(-0.5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -0.5 for a, 70 for b, and -650 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-70±\sqrt{4900-4\left(-0.5\right)\left(-650\right)}}{2\left(-0.5\right)}
Square 70.
x=\frac{-70±\sqrt{4900+2\left(-650\right)}}{2\left(-0.5\right)}
Multiply -4 times -0.5.
x=\frac{-70±\sqrt{4900-1300}}{2\left(-0.5\right)}
Multiply 2 times -650.
x=\frac{-70±\sqrt{3600}}{2\left(-0.5\right)}
Add 4900 to -1300.
x=\frac{-70±60}{2\left(-0.5\right)}
Take the square root of 3600.
x=\frac{-70±60}{-1}
Multiply 2 times -0.5.
x=-\frac{10}{-1}
Now solve the equation x=\frac{-70±60}{-1} when ± is plus. Add -70 to 60.
x=10
Divide -10 by -1.
x=-\frac{130}{-1}
Now solve the equation x=\frac{-70±60}{-1} when ± is minus. Subtract 60 from -70.
x=130
Divide -130 by -1.
x=10 x=130
The equation is now solved.
6650=6000+100x-0.5x\left(60+x\right)
Use the distributive property to multiply 100 by 60+x.
6000+100x-0.5x\left(60+x\right)=6650
Swap sides so that all variable terms are on the left hand side.
6000+100x-30x-0.5x^{2}=6650
Use the distributive property to multiply -0.5x by 60+x.
6000+70x-0.5x^{2}=6650
Combine 100x and -30x to get 70x.
70x-0.5x^{2}=6650-6000
Subtract 6000 from both sides.
70x-0.5x^{2}=650
Subtract 6000 from 6650 to get 650.
-0.5x^{2}+70x=650
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-0.5x^{2}+70x}{-0.5}=\frac{650}{-0.5}
Multiply both sides by -2.
x^{2}+\frac{70}{-0.5}x=\frac{650}{-0.5}
Dividing by -0.5 undoes the multiplication by -0.5.
x^{2}-140x=\frac{650}{-0.5}
Divide 70 by -0.5 by multiplying 70 by the reciprocal of -0.5.
x^{2}-140x=-1300
Divide 650 by -0.5 by multiplying 650 by the reciprocal of -0.5.
x^{2}-140x+\left(-70\right)^{2}=-1300+\left(-70\right)^{2}
Divide -140, the coefficient of the x term, by 2 to get -70. Then add the square of -70 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-140x+4900=-1300+4900
Square -70.
x^{2}-140x+4900=3600
Add -1300 to 4900.
\left(x-70\right)^{2}=3600
Factor x^{2}-140x+4900. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-70\right)^{2}}=\sqrt{3600}
Take the square root of both sides of the equation.
x-70=60 x-70=-60
Simplify.
x=130 x=10
Add 70 to both sides of the equation.