Evaluate
\frac{331}{9}\approx 36.777777778
Factor
\frac{331}{3 ^ {2}} = 36\frac{7}{9} = 36.77777777777778
Share
Copied to clipboard
\begin{array}{l}\phantom{18)}\phantom{1}\\18\overline{)662}\\\end{array}
Use the 1^{st} digit 6 from dividend 662
\begin{array}{l}\phantom{18)}0\phantom{2}\\18\overline{)662}\\\end{array}
Since 6 is less than 18, use the next digit 6 from dividend 662 and add 0 to the quotient
\begin{array}{l}\phantom{18)}0\phantom{3}\\18\overline{)662}\\\end{array}
Use the 2^{nd} digit 6 from dividend 662
\begin{array}{l}\phantom{18)}03\phantom{4}\\18\overline{)662}\\\phantom{18)}\underline{\phantom{}54\phantom{9}}\\\phantom{18)}12\\\end{array}
Find closest multiple of 18 to 66. We see that 3 \times 18 = 54 is the nearest. Now subtract 54 from 66 to get reminder 12. Add 3 to quotient.
\begin{array}{l}\phantom{18)}03\phantom{5}\\18\overline{)662}\\\phantom{18)}\underline{\phantom{}54\phantom{9}}\\\phantom{18)}122\\\end{array}
Use the 3^{rd} digit 2 from dividend 662
\begin{array}{l}\phantom{18)}036\phantom{6}\\18\overline{)662}\\\phantom{18)}\underline{\phantom{}54\phantom{9}}\\\phantom{18)}122\\\phantom{18)}\underline{\phantom{}108\phantom{}}\\\phantom{18)9}14\\\end{array}
Find closest multiple of 18 to 122. We see that 6 \times 18 = 108 is the nearest. Now subtract 108 from 122 to get reminder 14. Add 6 to quotient.
\text{Quotient: }36 \text{Reminder: }14
Since 14 is less than 18, stop the division. The reminder is 14. The topmost line 036 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 36.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}