Solve for m
m=6.2
Share
Copied to clipboard
\frac{66.5}{7}=m+3.3
Divide both sides by 7.
\frac{665}{70}=m+3.3
Expand \frac{66.5}{7} by multiplying both numerator and the denominator by 10.
\frac{19}{2}=m+3.3
Reduce the fraction \frac{665}{70} to lowest terms by extracting and canceling out 35.
m+3.3=\frac{19}{2}
Swap sides so that all variable terms are on the left hand side.
m=\frac{19}{2}-3.3
Subtract 3.3 from both sides.
m=\frac{19}{2}-\frac{33}{10}
Convert decimal number 3.3 to fraction \frac{33}{10}.
m=\frac{95}{10}-\frac{33}{10}
Least common multiple of 2 and 10 is 10. Convert \frac{19}{2} and \frac{33}{10} to fractions with denominator 10.
m=\frac{95-33}{10}
Since \frac{95}{10} and \frac{33}{10} have the same denominator, subtract them by subtracting their numerators.
m=\frac{62}{10}
Subtract 33 from 95 to get 62.
m=\frac{31}{5}
Reduce the fraction \frac{62}{10} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}