Solve for n
n = -\frac{11}{2} = -5\frac{1}{2} = -5.5
n=6
Share
Copied to clipboard
2n^{2}-n=66
Swap sides so that all variable terms are on the left hand side.
2n^{2}-n-66=0
Subtract 66 from both sides.
a+b=-1 ab=2\left(-66\right)=-132
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 2n^{2}+an+bn-66. To find a and b, set up a system to be solved.
1,-132 2,-66 3,-44 4,-33 6,-22 11,-12
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -132.
1-132=-131 2-66=-64 3-44=-41 4-33=-29 6-22=-16 11-12=-1
Calculate the sum for each pair.
a=-12 b=11
The solution is the pair that gives sum -1.
\left(2n^{2}-12n\right)+\left(11n-66\right)
Rewrite 2n^{2}-n-66 as \left(2n^{2}-12n\right)+\left(11n-66\right).
2n\left(n-6\right)+11\left(n-6\right)
Factor out 2n in the first and 11 in the second group.
\left(n-6\right)\left(2n+11\right)
Factor out common term n-6 by using distributive property.
n=6 n=-\frac{11}{2}
To find equation solutions, solve n-6=0 and 2n+11=0.
2n^{2}-n=66
Swap sides so that all variable terms are on the left hand side.
2n^{2}-n-66=0
Subtract 66 from both sides.
n=\frac{-\left(-1\right)±\sqrt{1-4\times 2\left(-66\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -1 for b, and -66 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-1\right)±\sqrt{1-8\left(-66\right)}}{2\times 2}
Multiply -4 times 2.
n=\frac{-\left(-1\right)±\sqrt{1+528}}{2\times 2}
Multiply -8 times -66.
n=\frac{-\left(-1\right)±\sqrt{529}}{2\times 2}
Add 1 to 528.
n=\frac{-\left(-1\right)±23}{2\times 2}
Take the square root of 529.
n=\frac{1±23}{2\times 2}
The opposite of -1 is 1.
n=\frac{1±23}{4}
Multiply 2 times 2.
n=\frac{24}{4}
Now solve the equation n=\frac{1±23}{4} when ± is plus. Add 1 to 23.
n=6
Divide 24 by 4.
n=-\frac{22}{4}
Now solve the equation n=\frac{1±23}{4} when ± is minus. Subtract 23 from 1.
n=-\frac{11}{2}
Reduce the fraction \frac{-22}{4} to lowest terms by extracting and canceling out 2.
n=6 n=-\frac{11}{2}
The equation is now solved.
2n^{2}-n=66
Swap sides so that all variable terms are on the left hand side.
\frac{2n^{2}-n}{2}=\frac{66}{2}
Divide both sides by 2.
n^{2}-\frac{1}{2}n=\frac{66}{2}
Dividing by 2 undoes the multiplication by 2.
n^{2}-\frac{1}{2}n=33
Divide 66 by 2.
n^{2}-\frac{1}{2}n+\left(-\frac{1}{4}\right)^{2}=33+\left(-\frac{1}{4}\right)^{2}
Divide -\frac{1}{2}, the coefficient of the x term, by 2 to get -\frac{1}{4}. Then add the square of -\frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}-\frac{1}{2}n+\frac{1}{16}=33+\frac{1}{16}
Square -\frac{1}{4} by squaring both the numerator and the denominator of the fraction.
n^{2}-\frac{1}{2}n+\frac{1}{16}=\frac{529}{16}
Add 33 to \frac{1}{16}.
\left(n-\frac{1}{4}\right)^{2}=\frac{529}{16}
Factor n^{2}-\frac{1}{2}n+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{1}{4}\right)^{2}}=\sqrt{\frac{529}{16}}
Take the square root of both sides of the equation.
n-\frac{1}{4}=\frac{23}{4} n-\frac{1}{4}=-\frac{23}{4}
Simplify.
n=6 n=-\frac{11}{2}
Add \frac{1}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}