Solve for x
x=\frac{12}{42y+65}
y\neq -\frac{65}{42}
Solve for y
y=-\frac{65}{42}+\frac{2}{7x}
x\neq 0
Graph
Share
Copied to clipboard
\left(65+42y\right)x=12
Combine all terms containing x.
\left(42y+65\right)x=12
The equation is in standard form.
\frac{\left(42y+65\right)x}{42y+65}=\frac{12}{42y+65}
Divide both sides by 65+42y.
x=\frac{12}{42y+65}
Dividing by 65+42y undoes the multiplication by 65+42y.
42xy=12-65x
Subtract 65x from both sides.
\frac{42xy}{42x}=\frac{12-65x}{42x}
Divide both sides by 42x.
y=\frac{12-65x}{42x}
Dividing by 42x undoes the multiplication by 42x.
y=-\frac{65}{42}+\frac{2}{7x}
Divide 12-65x by 42x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}