Evaluate
\frac{6559}{11}\approx 596.272727273
Factor
\frac{7 \cdot 937}{11} = 596\frac{3}{11} = 596.2727272727273
Share
Copied to clipboard
\begin{array}{l}\phantom{11)}\phantom{1}\\11\overline{)6559}\\\end{array}
Use the 1^{st} digit 6 from dividend 6559
\begin{array}{l}\phantom{11)}0\phantom{2}\\11\overline{)6559}\\\end{array}
Since 6 is less than 11, use the next digit 5 from dividend 6559 and add 0 to the quotient
\begin{array}{l}\phantom{11)}0\phantom{3}\\11\overline{)6559}\\\end{array}
Use the 2^{nd} digit 5 from dividend 6559
\begin{array}{l}\phantom{11)}05\phantom{4}\\11\overline{)6559}\\\phantom{11)}\underline{\phantom{}55\phantom{99}}\\\phantom{11)}10\\\end{array}
Find closest multiple of 11 to 65. We see that 5 \times 11 = 55 is the nearest. Now subtract 55 from 65 to get reminder 10. Add 5 to quotient.
\begin{array}{l}\phantom{11)}05\phantom{5}\\11\overline{)6559}\\\phantom{11)}\underline{\phantom{}55\phantom{99}}\\\phantom{11)}105\\\end{array}
Use the 3^{rd} digit 5 from dividend 6559
\begin{array}{l}\phantom{11)}059\phantom{6}\\11\overline{)6559}\\\phantom{11)}\underline{\phantom{}55\phantom{99}}\\\phantom{11)}105\\\phantom{11)}\underline{\phantom{9}99\phantom{9}}\\\phantom{11)99}6\\\end{array}
Find closest multiple of 11 to 105. We see that 9 \times 11 = 99 is the nearest. Now subtract 99 from 105 to get reminder 6. Add 9 to quotient.
\begin{array}{l}\phantom{11)}059\phantom{7}\\11\overline{)6559}\\\phantom{11)}\underline{\phantom{}55\phantom{99}}\\\phantom{11)}105\\\phantom{11)}\underline{\phantom{9}99\phantom{9}}\\\phantom{11)99}69\\\end{array}
Use the 4^{th} digit 9 from dividend 6559
\begin{array}{l}\phantom{11)}0596\phantom{8}\\11\overline{)6559}\\\phantom{11)}\underline{\phantom{}55\phantom{99}}\\\phantom{11)}105\\\phantom{11)}\underline{\phantom{9}99\phantom{9}}\\\phantom{11)99}69\\\phantom{11)}\underline{\phantom{99}66\phantom{}}\\\phantom{11)999}3\\\end{array}
Find closest multiple of 11 to 69. We see that 6 \times 11 = 66 is the nearest. Now subtract 66 from 69 to get reminder 3. Add 6 to quotient.
\text{Quotient: }596 \text{Reminder: }3
Since 3 is less than 11, stop the division. The reminder is 3. The topmost line 0596 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 596.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}