Evaluate
1024
Factor
2^{10}
Share
Copied to clipboard
\begin{array}{l}\phantom{64)}\phantom{1}\\64\overline{)65536}\\\end{array}
Use the 1^{st} digit 6 from dividend 65536
\begin{array}{l}\phantom{64)}0\phantom{2}\\64\overline{)65536}\\\end{array}
Since 6 is less than 64, use the next digit 5 from dividend 65536 and add 0 to the quotient
\begin{array}{l}\phantom{64)}0\phantom{3}\\64\overline{)65536}\\\end{array}
Use the 2^{nd} digit 5 from dividend 65536
\begin{array}{l}\phantom{64)}01\phantom{4}\\64\overline{)65536}\\\phantom{64)}\underline{\phantom{}64\phantom{999}}\\\phantom{64)9}1\\\end{array}
Find closest multiple of 64 to 65. We see that 1 \times 64 = 64 is the nearest. Now subtract 64 from 65 to get reminder 1. Add 1 to quotient.
\begin{array}{l}\phantom{64)}01\phantom{5}\\64\overline{)65536}\\\phantom{64)}\underline{\phantom{}64\phantom{999}}\\\phantom{64)9}15\\\end{array}
Use the 3^{rd} digit 5 from dividend 65536
\begin{array}{l}\phantom{64)}010\phantom{6}\\64\overline{)65536}\\\phantom{64)}\underline{\phantom{}64\phantom{999}}\\\phantom{64)9}15\\\end{array}
Since 15 is less than 64, use the next digit 3 from dividend 65536 and add 0 to the quotient
\begin{array}{l}\phantom{64)}010\phantom{7}\\64\overline{)65536}\\\phantom{64)}\underline{\phantom{}64\phantom{999}}\\\phantom{64)9}153\\\end{array}
Use the 4^{th} digit 3 from dividend 65536
\begin{array}{l}\phantom{64)}0102\phantom{8}\\64\overline{)65536}\\\phantom{64)}\underline{\phantom{}64\phantom{999}}\\\phantom{64)9}153\\\phantom{64)}\underline{\phantom{9}128\phantom{9}}\\\phantom{64)99}25\\\end{array}
Find closest multiple of 64 to 153. We see that 2 \times 64 = 128 is the nearest. Now subtract 128 from 153 to get reminder 25. Add 2 to quotient.
\begin{array}{l}\phantom{64)}0102\phantom{9}\\64\overline{)65536}\\\phantom{64)}\underline{\phantom{}64\phantom{999}}\\\phantom{64)9}153\\\phantom{64)}\underline{\phantom{9}128\phantom{9}}\\\phantom{64)99}256\\\end{array}
Use the 5^{th} digit 6 from dividend 65536
\begin{array}{l}\phantom{64)}01024\phantom{10}\\64\overline{)65536}\\\phantom{64)}\underline{\phantom{}64\phantom{999}}\\\phantom{64)9}153\\\phantom{64)}\underline{\phantom{9}128\phantom{9}}\\\phantom{64)99}256\\\phantom{64)}\underline{\phantom{99}256\phantom{}}\\\phantom{64)99999}0\\\end{array}
Find closest multiple of 64 to 256. We see that 4 \times 64 = 256 is the nearest. Now subtract 256 from 256 to get reminder 0. Add 4 to quotient.
\text{Quotient: }1024 \text{Reminder: }0
Since 0 is less than 64, stop the division. The reminder is 0. The topmost line 01024 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1024.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}