Evaluate
\frac{650555}{5456}\approx 119.236620235
Factor
\frac{5 \cdot 23 \cdot 5657}{2 ^ {4} \cdot 11 \cdot 31} = 119\frac{1291}{5456} = 119.2366202346041
Share
Copied to clipboard
\begin{array}{l}\phantom{5456)}\phantom{1}\\5456\overline{)650555}\\\end{array}
Use the 1^{st} digit 6 from dividend 650555
\begin{array}{l}\phantom{5456)}0\phantom{2}\\5456\overline{)650555}\\\end{array}
Since 6 is less than 5456, use the next digit 5 from dividend 650555 and add 0 to the quotient
\begin{array}{l}\phantom{5456)}0\phantom{3}\\5456\overline{)650555}\\\end{array}
Use the 2^{nd} digit 5 from dividend 650555
\begin{array}{l}\phantom{5456)}00\phantom{4}\\5456\overline{)650555}\\\end{array}
Since 65 is less than 5456, use the next digit 0 from dividend 650555 and add 0 to the quotient
\begin{array}{l}\phantom{5456)}00\phantom{5}\\5456\overline{)650555}\\\end{array}
Use the 3^{rd} digit 0 from dividend 650555
\begin{array}{l}\phantom{5456)}000\phantom{6}\\5456\overline{)650555}\\\end{array}
Since 650 is less than 5456, use the next digit 5 from dividend 650555 and add 0 to the quotient
\begin{array}{l}\phantom{5456)}000\phantom{7}\\5456\overline{)650555}\\\end{array}
Use the 4^{th} digit 5 from dividend 650555
\begin{array}{l}\phantom{5456)}0001\phantom{8}\\5456\overline{)650555}\\\phantom{5456)}\underline{\phantom{}5456\phantom{99}}\\\phantom{5456)}1049\\\end{array}
Find closest multiple of 5456 to 6505. We see that 1 \times 5456 = 5456 is the nearest. Now subtract 5456 from 6505 to get reminder 1049. Add 1 to quotient.
\begin{array}{l}\phantom{5456)}0001\phantom{9}\\5456\overline{)650555}\\\phantom{5456)}\underline{\phantom{}5456\phantom{99}}\\\phantom{5456)}10495\\\end{array}
Use the 5^{th} digit 5 from dividend 650555
\begin{array}{l}\phantom{5456)}00011\phantom{10}\\5456\overline{)650555}\\\phantom{5456)}\underline{\phantom{}5456\phantom{99}}\\\phantom{5456)}10495\\\phantom{5456)}\underline{\phantom{9}5456\phantom{9}}\\\phantom{5456)9}5039\\\end{array}
Find closest multiple of 5456 to 10495. We see that 1 \times 5456 = 5456 is the nearest. Now subtract 5456 from 10495 to get reminder 5039. Add 1 to quotient.
\begin{array}{l}\phantom{5456)}00011\phantom{11}\\5456\overline{)650555}\\\phantom{5456)}\underline{\phantom{}5456\phantom{99}}\\\phantom{5456)}10495\\\phantom{5456)}\underline{\phantom{9}5456\phantom{9}}\\\phantom{5456)9}50395\\\end{array}
Use the 6^{th} digit 5 from dividend 650555
\begin{array}{l}\phantom{5456)}000119\phantom{12}\\5456\overline{)650555}\\\phantom{5456)}\underline{\phantom{}5456\phantom{99}}\\\phantom{5456)}10495\\\phantom{5456)}\underline{\phantom{9}5456\phantom{9}}\\\phantom{5456)9}50395\\\phantom{5456)}\underline{\phantom{9}49104\phantom{}}\\\phantom{5456)99}1291\\\end{array}
Find closest multiple of 5456 to 50395. We see that 9 \times 5456 = 49104 is the nearest. Now subtract 49104 from 50395 to get reminder 1291. Add 9 to quotient.
\text{Quotient: }119 \text{Reminder: }1291
Since 1291 is less than 5456, stop the division. The reminder is 1291. The topmost line 000119 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 119.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}