Skip to main content
Solve for n
Tick mark Image

Similar Problems from Web Search

Share

6500=595n-15n^{2}
Use the distributive property to multiply n by 595-15n.
595n-15n^{2}=6500
Swap sides so that all variable terms are on the left hand side.
595n-15n^{2}-6500=0
Subtract 6500 from both sides.
-15n^{2}+595n-6500=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-595±\sqrt{595^{2}-4\left(-15\right)\left(-6500\right)}}{2\left(-15\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -15 for a, 595 for b, and -6500 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-595±\sqrt{354025-4\left(-15\right)\left(-6500\right)}}{2\left(-15\right)}
Square 595.
n=\frac{-595±\sqrt{354025+60\left(-6500\right)}}{2\left(-15\right)}
Multiply -4 times -15.
n=\frac{-595±\sqrt{354025-390000}}{2\left(-15\right)}
Multiply 60 times -6500.
n=\frac{-595±\sqrt{-35975}}{2\left(-15\right)}
Add 354025 to -390000.
n=\frac{-595±5\sqrt{1439}i}{2\left(-15\right)}
Take the square root of -35975.
n=\frac{-595±5\sqrt{1439}i}{-30}
Multiply 2 times -15.
n=\frac{-595+5\sqrt{1439}i}{-30}
Now solve the equation n=\frac{-595±5\sqrt{1439}i}{-30} when ± is plus. Add -595 to 5i\sqrt{1439}.
n=\frac{-\sqrt{1439}i+119}{6}
Divide -595+5i\sqrt{1439} by -30.
n=\frac{-5\sqrt{1439}i-595}{-30}
Now solve the equation n=\frac{-595±5\sqrt{1439}i}{-30} when ± is minus. Subtract 5i\sqrt{1439} from -595.
n=\frac{119+\sqrt{1439}i}{6}
Divide -595-5i\sqrt{1439} by -30.
n=\frac{-\sqrt{1439}i+119}{6} n=\frac{119+\sqrt{1439}i}{6}
The equation is now solved.
6500=595n-15n^{2}
Use the distributive property to multiply n by 595-15n.
595n-15n^{2}=6500
Swap sides so that all variable terms are on the left hand side.
-15n^{2}+595n=6500
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-15n^{2}+595n}{-15}=\frac{6500}{-15}
Divide both sides by -15.
n^{2}+\frac{595}{-15}n=\frac{6500}{-15}
Dividing by -15 undoes the multiplication by -15.
n^{2}-\frac{119}{3}n=\frac{6500}{-15}
Reduce the fraction \frac{595}{-15} to lowest terms by extracting and canceling out 5.
n^{2}-\frac{119}{3}n=-\frac{1300}{3}
Reduce the fraction \frac{6500}{-15} to lowest terms by extracting and canceling out 5.
n^{2}-\frac{119}{3}n+\left(-\frac{119}{6}\right)^{2}=-\frac{1300}{3}+\left(-\frac{119}{6}\right)^{2}
Divide -\frac{119}{3}, the coefficient of the x term, by 2 to get -\frac{119}{6}. Then add the square of -\frac{119}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}-\frac{119}{3}n+\frac{14161}{36}=-\frac{1300}{3}+\frac{14161}{36}
Square -\frac{119}{6} by squaring both the numerator and the denominator of the fraction.
n^{2}-\frac{119}{3}n+\frac{14161}{36}=-\frac{1439}{36}
Add -\frac{1300}{3} to \frac{14161}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(n-\frac{119}{6}\right)^{2}=-\frac{1439}{36}
Factor n^{2}-\frac{119}{3}n+\frac{14161}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{119}{6}\right)^{2}}=\sqrt{-\frac{1439}{36}}
Take the square root of both sides of the equation.
n-\frac{119}{6}=\frac{\sqrt{1439}i}{6} n-\frac{119}{6}=-\frac{\sqrt{1439}i}{6}
Simplify.
n=\frac{119+\sqrt{1439}i}{6} n=\frac{-\sqrt{1439}i+119}{6}
Add \frac{119}{6} to both sides of the equation.