Evaluate
\frac{325}{74}\approx 4.391891892
Factor
\frac{5 ^ {2} \cdot 13}{2 \cdot 37} = 4\frac{29}{74} = 4.391891891891892
Share
Copied to clipboard
\begin{array}{l}\phantom{148)}\phantom{1}\\148\overline{)650}\\\end{array}
Use the 1^{st} digit 6 from dividend 650
\begin{array}{l}\phantom{148)}0\phantom{2}\\148\overline{)650}\\\end{array}
Since 6 is less than 148, use the next digit 5 from dividend 650 and add 0 to the quotient
\begin{array}{l}\phantom{148)}0\phantom{3}\\148\overline{)650}\\\end{array}
Use the 2^{nd} digit 5 from dividend 650
\begin{array}{l}\phantom{148)}00\phantom{4}\\148\overline{)650}\\\end{array}
Since 65 is less than 148, use the next digit 0 from dividend 650 and add 0 to the quotient
\begin{array}{l}\phantom{148)}00\phantom{5}\\148\overline{)650}\\\end{array}
Use the 3^{rd} digit 0 from dividend 650
\begin{array}{l}\phantom{148)}004\phantom{6}\\148\overline{)650}\\\phantom{148)}\underline{\phantom{}592\phantom{}}\\\phantom{148)9}58\\\end{array}
Find closest multiple of 148 to 650. We see that 4 \times 148 = 592 is the nearest. Now subtract 592 from 650 to get reminder 58. Add 4 to quotient.
\text{Quotient: }4 \text{Reminder: }58
Since 58 is less than 148, stop the division. The reminder is 58. The topmost line 004 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}