Evaluate
\frac{325}{6}\approx 54.166666667
Factor
\frac{5 ^ {2} \cdot 13}{2 \cdot 3} = 54\frac{1}{6} = 54.166666666666664
Share
Copied to clipboard
\begin{array}{l}\phantom{12)}\phantom{1}\\12\overline{)650}\\\end{array}
Use the 1^{st} digit 6 from dividend 650
\begin{array}{l}\phantom{12)}0\phantom{2}\\12\overline{)650}\\\end{array}
Since 6 is less than 12, use the next digit 5 from dividend 650 and add 0 to the quotient
\begin{array}{l}\phantom{12)}0\phantom{3}\\12\overline{)650}\\\end{array}
Use the 2^{nd} digit 5 from dividend 650
\begin{array}{l}\phantom{12)}05\phantom{4}\\12\overline{)650}\\\phantom{12)}\underline{\phantom{}60\phantom{9}}\\\phantom{12)9}5\\\end{array}
Find closest multiple of 12 to 65. We see that 5 \times 12 = 60 is the nearest. Now subtract 60 from 65 to get reminder 5. Add 5 to quotient.
\begin{array}{l}\phantom{12)}05\phantom{5}\\12\overline{)650}\\\phantom{12)}\underline{\phantom{}60\phantom{9}}\\\phantom{12)9}50\\\end{array}
Use the 3^{rd} digit 0 from dividend 650
\begin{array}{l}\phantom{12)}054\phantom{6}\\12\overline{)650}\\\phantom{12)}\underline{\phantom{}60\phantom{9}}\\\phantom{12)9}50\\\phantom{12)}\underline{\phantom{9}48\phantom{}}\\\phantom{12)99}2\\\end{array}
Find closest multiple of 12 to 50. We see that 4 \times 12 = 48 is the nearest. Now subtract 48 from 50 to get reminder 2. Add 4 to quotient.
\text{Quotient: }54 \text{Reminder: }2
Since 2 is less than 12, stop the division. The reminder is 2. The topmost line 054 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 54.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}