Evaluate
\frac{650}{47}\approx 13.829787234
Factor
\frac{2 \cdot 5 ^ {2} \cdot 13}{47} = 13\frac{39}{47} = 13.829787234042554
Share
Copied to clipboard
\begin{array}{l}\phantom{47)}\phantom{1}\\47\overline{)650}\\\end{array}
Use the 1^{st} digit 6 from dividend 650
\begin{array}{l}\phantom{47)}0\phantom{2}\\47\overline{)650}\\\end{array}
Since 6 is less than 47, use the next digit 5 from dividend 650 and add 0 to the quotient
\begin{array}{l}\phantom{47)}0\phantom{3}\\47\overline{)650}\\\end{array}
Use the 2^{nd} digit 5 from dividend 650
\begin{array}{l}\phantom{47)}01\phantom{4}\\47\overline{)650}\\\phantom{47)}\underline{\phantom{}47\phantom{9}}\\\phantom{47)}18\\\end{array}
Find closest multiple of 47 to 65. We see that 1 \times 47 = 47 is the nearest. Now subtract 47 from 65 to get reminder 18. Add 1 to quotient.
\begin{array}{l}\phantom{47)}01\phantom{5}\\47\overline{)650}\\\phantom{47)}\underline{\phantom{}47\phantom{9}}\\\phantom{47)}180\\\end{array}
Use the 3^{rd} digit 0 from dividend 650
\begin{array}{l}\phantom{47)}013\phantom{6}\\47\overline{)650}\\\phantom{47)}\underline{\phantom{}47\phantom{9}}\\\phantom{47)}180\\\phantom{47)}\underline{\phantom{}141\phantom{}}\\\phantom{47)9}39\\\end{array}
Find closest multiple of 47 to 180. We see that 3 \times 47 = 141 is the nearest. Now subtract 141 from 180 to get reminder 39. Add 3 to quotient.
\text{Quotient: }13 \text{Reminder: }39
Since 39 is less than 47, stop the division. The reminder is 39. The topmost line 013 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 13.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}