Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}+5x-4=65
Swap sides so that all variable terms are on the left hand side.
4x^{2}+5x-4-65=0
Subtract 65 from both sides.
4x^{2}+5x-69=0
Subtract 65 from -4 to get -69.
x=\frac{-5±\sqrt{5^{2}-4\times 4\left(-69\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 5 for b, and -69 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 4\left(-69\right)}}{2\times 4}
Square 5.
x=\frac{-5±\sqrt{25-16\left(-69\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-5±\sqrt{25+1104}}{2\times 4}
Multiply -16 times -69.
x=\frac{-5±\sqrt{1129}}{2\times 4}
Add 25 to 1104.
x=\frac{-5±\sqrt{1129}}{8}
Multiply 2 times 4.
x=\frac{\sqrt{1129}-5}{8}
Now solve the equation x=\frac{-5±\sqrt{1129}}{8} when ± is plus. Add -5 to \sqrt{1129}.
x=\frac{-\sqrt{1129}-5}{8}
Now solve the equation x=\frac{-5±\sqrt{1129}}{8} when ± is minus. Subtract \sqrt{1129} from -5.
x=\frac{\sqrt{1129}-5}{8} x=\frac{-\sqrt{1129}-5}{8}
The equation is now solved.
4x^{2}+5x-4=65
Swap sides so that all variable terms are on the left hand side.
4x^{2}+5x=65+4
Add 4 to both sides.
4x^{2}+5x=69
Add 65 and 4 to get 69.
\frac{4x^{2}+5x}{4}=\frac{69}{4}
Divide both sides by 4.
x^{2}+\frac{5}{4}x=\frac{69}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+\frac{5}{4}x+\left(\frac{5}{8}\right)^{2}=\frac{69}{4}+\left(\frac{5}{8}\right)^{2}
Divide \frac{5}{4}, the coefficient of the x term, by 2 to get \frac{5}{8}. Then add the square of \frac{5}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{5}{4}x+\frac{25}{64}=\frac{69}{4}+\frac{25}{64}
Square \frac{5}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{5}{4}x+\frac{25}{64}=\frac{1129}{64}
Add \frac{69}{4} to \frac{25}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{5}{8}\right)^{2}=\frac{1129}{64}
Factor x^{2}+\frac{5}{4}x+\frac{25}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{8}\right)^{2}}=\sqrt{\frac{1129}{64}}
Take the square root of both sides of the equation.
x+\frac{5}{8}=\frac{\sqrt{1129}}{8} x+\frac{5}{8}=-\frac{\sqrt{1129}}{8}
Simplify.
x=\frac{\sqrt{1129}-5}{8} x=\frac{-\sqrt{1129}-5}{8}
Subtract \frac{5}{8} from both sides of the equation.