Solve for x
x=-\frac{7}{13}\approx -0.538461538
x = -\frac{7}{5} = -1\frac{2}{5} = -1.4
Graph
Share
Copied to clipboard
65x^{2}+126x+49=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-126±\sqrt{126^{2}-4\times 65\times 49}}{2\times 65}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 65 for a, 126 for b, and 49 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-126±\sqrt{15876-4\times 65\times 49}}{2\times 65}
Square 126.
x=\frac{-126±\sqrt{15876-260\times 49}}{2\times 65}
Multiply -4 times 65.
x=\frac{-126±\sqrt{15876-12740}}{2\times 65}
Multiply -260 times 49.
x=\frac{-126±\sqrt{3136}}{2\times 65}
Add 15876 to -12740.
x=\frac{-126±56}{2\times 65}
Take the square root of 3136.
x=\frac{-126±56}{130}
Multiply 2 times 65.
x=-\frac{70}{130}
Now solve the equation x=\frac{-126±56}{130} when ± is plus. Add -126 to 56.
x=-\frac{7}{13}
Reduce the fraction \frac{-70}{130} to lowest terms by extracting and canceling out 10.
x=-\frac{182}{130}
Now solve the equation x=\frac{-126±56}{130} when ± is minus. Subtract 56 from -126.
x=-\frac{7}{5}
Reduce the fraction \frac{-182}{130} to lowest terms by extracting and canceling out 26.
x=-\frac{7}{13} x=-\frac{7}{5}
The equation is now solved.
65x^{2}+126x+49=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
65x^{2}+126x+49-49=-49
Subtract 49 from both sides of the equation.
65x^{2}+126x=-49
Subtracting 49 from itself leaves 0.
\frac{65x^{2}+126x}{65}=-\frac{49}{65}
Divide both sides by 65.
x^{2}+\frac{126}{65}x=-\frac{49}{65}
Dividing by 65 undoes the multiplication by 65.
x^{2}+\frac{126}{65}x+\left(\frac{63}{65}\right)^{2}=-\frac{49}{65}+\left(\frac{63}{65}\right)^{2}
Divide \frac{126}{65}, the coefficient of the x term, by 2 to get \frac{63}{65}. Then add the square of \frac{63}{65} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{126}{65}x+\frac{3969}{4225}=-\frac{49}{65}+\frac{3969}{4225}
Square \frac{63}{65} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{126}{65}x+\frac{3969}{4225}=\frac{784}{4225}
Add -\frac{49}{65} to \frac{3969}{4225} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{63}{65}\right)^{2}=\frac{784}{4225}
Factor x^{2}+\frac{126}{65}x+\frac{3969}{4225}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{63}{65}\right)^{2}}=\sqrt{\frac{784}{4225}}
Take the square root of both sides of the equation.
x+\frac{63}{65}=\frac{28}{65} x+\frac{63}{65}=-\frac{28}{65}
Simplify.
x=-\frac{7}{13} x=-\frac{7}{5}
Subtract \frac{63}{65} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}