Solve for x
x=\sqrt{7361}\approx 85.796270315
x=-\sqrt{7361}\approx -85.796270315
Graph
Share
Copied to clipboard
4225=x^{2}-56^{2}
Calculate 65 to the power of 2 and get 4225.
4225=x^{2}-3136
Calculate 56 to the power of 2 and get 3136.
x^{2}-3136=4225
Swap sides so that all variable terms are on the left hand side.
x^{2}=4225+3136
Add 3136 to both sides.
x^{2}=7361
Add 4225 and 3136 to get 7361.
x=\sqrt{7361} x=-\sqrt{7361}
Take the square root of both sides of the equation.
4225=x^{2}-56^{2}
Calculate 65 to the power of 2 and get 4225.
4225=x^{2}-3136
Calculate 56 to the power of 2 and get 3136.
x^{2}-3136=4225
Swap sides so that all variable terms are on the left hand side.
x^{2}-3136-4225=0
Subtract 4225 from both sides.
x^{2}-7361=0
Subtract 4225 from -3136 to get -7361.
x=\frac{0±\sqrt{0^{2}-4\left(-7361\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -7361 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-7361\right)}}{2}
Square 0.
x=\frac{0±\sqrt{29444}}{2}
Multiply -4 times -7361.
x=\frac{0±2\sqrt{7361}}{2}
Take the square root of 29444.
x=\sqrt{7361}
Now solve the equation x=\frac{0±2\sqrt{7361}}{2} when ± is plus.
x=-\sqrt{7361}
Now solve the equation x=\frac{0±2\sqrt{7361}}{2} when ± is minus.
x=\sqrt{7361} x=-\sqrt{7361}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}