Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4225=\left(16x\right)^{2}+\left(9x\right)^{2}
Calculate 65 to the power of 2 and get 4225.
4225=16^{2}x^{2}+\left(9x\right)^{2}
Expand \left(16x\right)^{2}.
4225=256x^{2}+\left(9x\right)^{2}
Calculate 16 to the power of 2 and get 256.
4225=256x^{2}+9^{2}x^{2}
Expand \left(9x\right)^{2}.
4225=256x^{2}+81x^{2}
Calculate 9 to the power of 2 and get 81.
4225=337x^{2}
Combine 256x^{2} and 81x^{2} to get 337x^{2}.
337x^{2}=4225
Swap sides so that all variable terms are on the left hand side.
x^{2}=\frac{4225}{337}
Divide both sides by 337.
x=\frac{65\sqrt{337}}{337} x=-\frac{65\sqrt{337}}{337}
Take the square root of both sides of the equation.
4225=\left(16x\right)^{2}+\left(9x\right)^{2}
Calculate 65 to the power of 2 and get 4225.
4225=16^{2}x^{2}+\left(9x\right)^{2}
Expand \left(16x\right)^{2}.
4225=256x^{2}+\left(9x\right)^{2}
Calculate 16 to the power of 2 and get 256.
4225=256x^{2}+9^{2}x^{2}
Expand \left(9x\right)^{2}.
4225=256x^{2}+81x^{2}
Calculate 9 to the power of 2 and get 81.
4225=337x^{2}
Combine 256x^{2} and 81x^{2} to get 337x^{2}.
337x^{2}=4225
Swap sides so that all variable terms are on the left hand side.
337x^{2}-4225=0
Subtract 4225 from both sides.
x=\frac{0±\sqrt{0^{2}-4\times 337\left(-4225\right)}}{2\times 337}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 337 for a, 0 for b, and -4225 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 337\left(-4225\right)}}{2\times 337}
Square 0.
x=\frac{0±\sqrt{-1348\left(-4225\right)}}{2\times 337}
Multiply -4 times 337.
x=\frac{0±\sqrt{5695300}}{2\times 337}
Multiply -1348 times -4225.
x=\frac{0±130\sqrt{337}}{2\times 337}
Take the square root of 5695300.
x=\frac{0±130\sqrt{337}}{674}
Multiply 2 times 337.
x=\frac{65\sqrt{337}}{337}
Now solve the equation x=\frac{0±130\sqrt{337}}{674} when ± is plus.
x=-\frac{65\sqrt{337}}{337}
Now solve the equation x=\frac{0±130\sqrt{337}}{674} when ± is minus.
x=\frac{65\sqrt{337}}{337} x=-\frac{65\sqrt{337}}{337}
The equation is now solved.