Evaluate
18
Factor
2\times 3^{2}
Share
Copied to clipboard
\begin{array}{l}\phantom{36)}\phantom{1}\\36\overline{)648}\\\end{array}
Use the 1^{st} digit 6 from dividend 648
\begin{array}{l}\phantom{36)}0\phantom{2}\\36\overline{)648}\\\end{array}
Since 6 is less than 36, use the next digit 4 from dividend 648 and add 0 to the quotient
\begin{array}{l}\phantom{36)}0\phantom{3}\\36\overline{)648}\\\end{array}
Use the 2^{nd} digit 4 from dividend 648
\begin{array}{l}\phantom{36)}01\phantom{4}\\36\overline{)648}\\\phantom{36)}\underline{\phantom{}36\phantom{9}}\\\phantom{36)}28\\\end{array}
Find closest multiple of 36 to 64. We see that 1 \times 36 = 36 is the nearest. Now subtract 36 from 64 to get reminder 28. Add 1 to quotient.
\begin{array}{l}\phantom{36)}01\phantom{5}\\36\overline{)648}\\\phantom{36)}\underline{\phantom{}36\phantom{9}}\\\phantom{36)}288\\\end{array}
Use the 3^{rd} digit 8 from dividend 648
\begin{array}{l}\phantom{36)}018\phantom{6}\\36\overline{)648}\\\phantom{36)}\underline{\phantom{}36\phantom{9}}\\\phantom{36)}288\\\phantom{36)}\underline{\phantom{}288\phantom{}}\\\phantom{36)999}0\\\end{array}
Find closest multiple of 36 to 288. We see that 8 \times 36 = 288 is the nearest. Now subtract 288 from 288 to get reminder 0. Add 8 to quotient.
\text{Quotient: }18 \text{Reminder: }0
Since 0 is less than 36, stop the division. The reminder is 0. The topmost line 018 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 18.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}