Evaluate
\frac{27}{8}=3.375
Factor
\frac{3 ^ {3}}{2 ^ {3}} = 3\frac{3}{8} = 3.375
Share
Copied to clipboard
\begin{array}{l}\phantom{192)}\phantom{1}\\192\overline{)648}\\\end{array}
Use the 1^{st} digit 6 from dividend 648
\begin{array}{l}\phantom{192)}0\phantom{2}\\192\overline{)648}\\\end{array}
Since 6 is less than 192, use the next digit 4 from dividend 648 and add 0 to the quotient
\begin{array}{l}\phantom{192)}0\phantom{3}\\192\overline{)648}\\\end{array}
Use the 2^{nd} digit 4 from dividend 648
\begin{array}{l}\phantom{192)}00\phantom{4}\\192\overline{)648}\\\end{array}
Since 64 is less than 192, use the next digit 8 from dividend 648 and add 0 to the quotient
\begin{array}{l}\phantom{192)}00\phantom{5}\\192\overline{)648}\\\end{array}
Use the 3^{rd} digit 8 from dividend 648
\begin{array}{l}\phantom{192)}003\phantom{6}\\192\overline{)648}\\\phantom{192)}\underline{\phantom{}576\phantom{}}\\\phantom{192)9}72\\\end{array}
Find closest multiple of 192 to 648. We see that 3 \times 192 = 576 is the nearest. Now subtract 576 from 648 to get reminder 72. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }72
Since 72 is less than 192, stop the division. The reminder is 72. The topmost line 003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}